Use of Renewable Energy Sources for Guaranteed Power Supply to Crossings of Long Railway Lines

  • Валерий [Valeriy] Владимирович [V.] Харченко [Kharchenko]
  • Елена [Elena] Валентиновна [V.] Гусарова [Gusarova]
Keywords: railway crossing, power supply, renewable energy sources, vibration sensors, booster power supply

Abstract

The article considers a new approach for the power supply system based on renewable energy sources at crossings located in non-electrified railway sections.

There are about 22 thousand crossings in Russia, and their number continues to decrease steadily. But in view of objective reasons, it is not possible to completely do away with automatically controlled single-level crossings, one of such reasons being the lack of electric power supply at the crossing. As a rule, such crossings are located in non-electrified railway sections or are a distance away from centralized power supply networks. A power supply system based on renewable energy sources (RES) has been developed. An analysis was carried out, which has shown that it is possible to use solar and wind power plants at crossings located in non-electrified railway sections.

Information about authors

Валерий [Valeriy] Владимирович [V.] Харченко [Kharchenko]

Dr.Sci. (Techn.), Professor, Chief Expert of Federal Scientific Agroengineering Center VIM, e-mail: kharval@mail.ru

Елена [Elena] Валентиновна [V.] Гусарова [Gusarova]

Senior Lecturer Russian University of Transport, e-mail:gusarova_elena93@list.ru

References

1. Cherian M.E., Das A., Sharma R. Integration of Renewable Energy Sources with LCC HVDC System Using a New Circuit Topology with DC Fault Ride-through Capability // IET Power Electronics. 2020. V. 13. No. 19. Рp. 4551—4561.
2. Hasanpour S., Siwakoti Y., Blaabjerg F. New Single-switch Quadratic Boost DC/DC Converter with Low Voltage Stress for Renewable Energy Applications // Ibid. Рp. 4592—4600.
3. Singh Y., Singh B., Mishra S. Photovoltaic-battery Powered Grid Connected System Using Multi-structural Adaptive Circular Noise Estimation Control // IET Power Electronics. 2021. V. 14. No. 2. Рp. 397—411.
4. Усачева И.В. и др. Микросети для локального энергоснабжения децентрализованных потребителей: обзор международного опыта // Научные труды Вольного экономического общества России. 2021. Т. 229. № 3. С. 167—184.
5. Гусарова Е.В. Повышение эффективности системы безопасности на железнодорожных переездах // Меридиан. 2020. № 8(42). С. 3—5.
6. Гусарова Е.В. Телевидение как элемент безопасности на железнодорожном транспорте // Экология и безопасность жизнедеятельности: Сб. статей XVIII Междунар. науч.-практ. конф. Пенза: Изд-во Пензенского гос. аграрного ун-та. 2018. С. 131—133.
7. Кнышев И.П., Гусарова Е.В., Тулемисов Т.Т. Система технического зрения на железнодорожном транспорте // Автоматика, связь, информатика. 2019. № 10. С. 15—17.
8. Gueye I., Dioum I., Diop I., Wane K. Performance of Hybrid RF/FSO Cooperative Systems Based on Quasicyclic LDPC Codes and Space-coupled LDPC Codes // Wireless Communications & Mobile Computing. 2020. V.‏ 12. Pp. 1—15.
9. Al-Saman A., Mohamed M., Cheffena M. Radio Propagation Measurements in the Indoor Stairwell Environment at 3.5 and 28 GHz for 5G Wireless Networks // Intern. J. Antennas and Propagation. 2020. V.‏ 3. Pp. 1—10.
10. Li J., Wu H. Localisation Algorithm for Security Access Control in Railway Communications // IET Intelligent Transport Syst. 2021. V. 14(2). Рp. 2151—2159.
11. Tavana M., Ozger M., Baltaci A. Wireless Power Transfer for Aircraft IoT Applications: System Design and Measurements // IEEE Internet of Things J. 2021. V. 8. No. 15. Рp. 11834—11846.
12. Vodolazskaya I., Eserkepov A., Akhunzhanov R. Effect of Tunneling on the Electrical Conductivity of Nanowire-based Films: Computer Simulation within a Core-shell Model // J. Appl. Phys. 2019. V. 126. No. 24. P. 244903.
13. Mitsugi J., Sato Y., Kawakita Y. Frequency Efficient Subcarrier Spacing in Multicarrier Backscatter Sensors System // IEICE Trans. Fundamentals of Electronics Communications and Computer Sci. 2019. V. E102A. No 12. Рp. 1834—1841.
14. Гусарова Е.В., Чеченя С.А. Влияние параметров фрактальных сигналов на характеристики скейлинговой системы передачи информации // Радиоэлектроника, электротехника и энергетика: Тез. докл. XXIII Междунар. науч.-техн. конф. студентов и аспирантов. М.: Изд-во МЭИ, 2017. Т. 1. С. 28.
---
Для цитирования: Харченко В.В., Гусарова Е.В. Использование возобновляемых источников энергии для гарантированного электроснабжения протяженных железнодорожных линий // Вестник МЭИ. 2023. № 5. С. 94—101. DOI: 10.24160/1993-6982-2023-5-94-101
#
1. Cherian M.E., Das A., Sharma R. Integration of Renewable Energy Sources with LCC HVDC System Using a New Circuit Topology with DC Fault Ride-through Capability. IET Power Electronics. 2020;13;19:4551—4561.
2. Hasanpour S., Siwakoti Y., Blaabjerg F. New Single-switch Quadratic Boost DC/DC Converter with Low Voltage Stress for Renewable Energy Applications. Ibid:4592—4600.
3. Singh Y., Singh B., Mishra S. Photovoltaic-battery Powered Grid Connected System Using Multi-structural Adaptive Circular Noise Estimation Control. IET Power Electronics. 2021;14;2:397—411.
4. Usacheva I.V. i dr. Mikroseti dlya Lokal'nogo Energosnabzheniya Detsentralizovannykh Potrebiteley: Obzor Mezhdunarodnogo Opyta. Nauchnye Trudy Vol'nogo Ekonomicheskogo Obshchestva Rossii. 2021;229;3:167—184. (in Russian).
5. Gusarova E.V. Povyshenie Effektivnosti Sistemy Bezopasnosti na Zheleznodorozhnykh Pereezdakh. Meridian. 2020;8(42):3—5. (in Russian).
6. Gusarova E.V. Televidenie kak Element Bezopasnosti na Zheleznodorozhnom Transporte. Ekologiya i Bezopasnost' Zhiznedeyatel'nosti: Sb. Statey XVIII Mezhdunar. Nauch.-prakt. Konf. Penza: Izd-vo Penzenskogo Gos. Agrarnogo Un-ta. 2018:131—133. (in Russian).
7. Knyshev I.P., Gusarova E.V., Tulemisov T.T. Sistema Tekhnicheskogo Zreniya na Zheleznodorozhnom Transporte. Avtomatika, Svyaz', Informatika. 2019;10:15—17. (in Russian).
8. Gueye I., Dioum I., Diop I., Wane K. Performance of Hybrid RF/FSO Cooperative Systems Based on Quasicyclic LDPC Codes and Space-coupled LDPC Codes. Wireless Communications & Mobile Computing. 2020;12:1—15.
9. Al-Saman A., Mohamed M., Cheffena M. Radio Propagation Measurements in the Indoor Stairwell Environment at 3.5 and 28 GHz for 5G Wireless Networks. Intern. J. Antennas and Propagation. 2020;3:1—10.
10. Li J., Wu H. Localisation Algorithm for Security Access Control in Railway Communications. IET Intelligent Transport Syst. 2021;14(2):2151—2159.
11. Tavana M., Ozger M., Baltaci A. Wireless Power Transfer for Aircraft IoT Applications: System Design and Measurements. IEEE Internet of Things J. 2021;8;15:11834—11846.
12. Vodolazskaya I., Eserkepov A., Akhunzhanov R. Effect of Tunneling on the Electrical Conductivity of Nanowire-based Films: Computer Simulation within a Core-shell Model. J. Appl. Phys. 2019;126;24:244903.
13. Mitsugi J., Sato Y., Kawakita Y. Frequency Efficient Subcarrier Spacing in Multicarrier Backscatter Sensors System. IEICE Trans. Fundamentals of Electronics Communications and Computer Sci. 2019;E102A;12:1834—1841.
14. Gusarova E.V., Chechenya S.A. Vliyanie Parametrov Fraktal'nykh Signalov na Kharakteristiki Skeylingovoy Sistemy Peredachi Informatsii. Radioelektronika, Elektrotekhnika i Energetika: Tez. Dokl. XXIII Mezhdunar. Nauch.-tekhn. Konf. Studentov i Aspirantov. M.: Izd-vo MEI, 2017;1:28. (in Russian)
---
For citation: Kharchenko V.V., Gusarova E.V. Use of Renewable Energy Sources for Guaranteed Power Supply to Crossings of Long Railway Lines. Bulletin of MPEI. 2023;5:94—101. (in Russian). DOI: 10.24160/1993-6982-2023-5-94-101
Published
2023-06-06
Section
Energy Systems and Complexes (2.4.5)