Determining the Non-Destructive Testing Frequency of the Metal of Slightly Defective NPP Equipment and Pipelines Based on a Risk-oriented Approach

  • Дмитрий [Dmitriy] Александрович [A.] Кузьмин [Kuz’min]
  • Марина [Marina] Владимировна [V.] Верташенок [Vertashenok]
  • Олег [Oleg] Сергеевич [S.] Толкачев [Tolkachev]
Keywords: nuclear power plant, non-destructive testing, fracture probability, postulated flaws, limited number of non-destructive testing results

Abstract

The frequency of performing non-destructive testing in the absence of sufficient data on detected discontinuities is determined with the aim to justify the possibility of shifting the equipment and pipelines for 10-year intervals between examinations using a risk-oriented approach and optimizing the production costs at a nuclear power plant.

The determination is based on a risk-oriented approach and the probability of flaws to exist in equipment or pipelines, and takes into account the flaw growth during operation, the fracture mechanics, probability theory and mathematical statistics. Discontinuities are represented as cracks proceeding from conservative assumptions. This approach makes it possible to determine the frequency of non-destructive testing when there is a limited number of results of previous examinations (slightly defective equipment and pipelines) and is a further development of the methodology set out in the document “Justification of the Admissibility of Changing the Scopes and Frequency of In-Service Non-Destructive Testing of the Metal of Secondary Circuit Equipment and Pipelines at Nuclear Power Plants with VVER-1000 and VVER-1200 Reactors” applied at Rosenergoatom Concern JSC. Operational data, design data and non-destructive testing results serve as initial data for the approach.

By using the developed approach, it is possible to obtain the distribution of residual flaws of equipment and pipelines for NPP subsystems, i.e., the probability of a residual (missed) flaw after inspection and repair as a function of its size, which helps determine the probability and risk of failure and the non-destructive testing frequency. In developing the approach, more than 4000 data on discontinuities detected during non-destructive testing were processed, and residual flaw distribution coefficients for the secondary circuit equipment and pipelines at NPPs with VVER reactors were obtained.

The developed approach can be applied for the secondary or tertiary third circuit of NPPs with VVER or fast reactors, respectively.

The approach is a further development of the methodology developed for NPPs, and opens the possibility to evaluate the non-destructive testing frequency when there is a limited amount of non-destructive testing results. Calculation examples for the secondary circuit pipelines of the NPP with a VVER reactor are given.

Information about authors

Дмитрий [Dmitriy] Александрович [A.] Кузьмин [Kuz’min]

Ph.D. (Techn.), Head of Strength Reliability of NPP Equipment and Pipelines Dept., All-Russian Research Institute for Nuclear Power Plants Operation, e-mail: Kuzmin_DA@yahoo.com

Марина [Marina] Владимировна [V.] Верташенок [Vertashenok]

Ph.D.-student, Chief Specialist of Strength Reliability of NPP Equipment and Pipelines Dept., All-Russian Research Institute for Nuclear Power Plants Operation, e-mail: Rodionova_m@bk.ru

Олег [Oleg] Сергеевич [S.] Толкачев [Tolkachev]

Ph.D.-student, Engineer of Strength Reliability of NPP Equipment and Pipelines Dept., All-Russian Research Institute for Nuclear Power Plants Operation, e-mail: OSTolkachev@vniiaes.ru

References

1. НП-084-15. Правила контроля основного металла, сварных соединений и наплавленных поверхностей при эксплуатации оборудования, трубопроводов и других элементов атомных станций.
2. МТ 1.1.4.02.001.1803—2021. Обоснование допустимости изменения объемов и периодичности эксплуатационного неразрушающего контроля металла оборудования и трубопроводов второго контура атомных станций с ВВЭР-1000 и ВВЭР-1200. М.: АО «Концерн Росэнергоатом», 2021.
3. Witek M. Pipeline Failure Probability Evaluation Based on In-line Inspection // Pipeline Technol. J. 2018. V. 3. Pp. 16—21.
4. Неганов Д.А., Варшицкий В.М., Белкин А.А., Фигаров Э.Н. Оценка вероятности разрушения участка магистрального нефтепровода по данным внутритрубной диагностики // Нефтяное хозяйство. 2022. № 5. С. 108—112.
5. Subair Syed Akbar Ali M., Rajagopal P. Probability of Detection (PoD) Curves Based on Weibull Statistics // J. Nondestructive Evaluation. 2018. V. 37(2). P. 20.
6. Alexandrov A. E., Azhder T.B., Bunina L.V., Bikovsky S.S. Computer Program for Calculating Pipelines Destruction Probability // Proc. conf. Data Sci. and Intelligent Systems. 2021. V. 2. Pp. 718—733.
7. Li M., Spencer F.W., Meeker W.Q. Quantile Probability of Detection: Distinguishing between Uncertainty Variability in Nondestructive Testing // Material Evaluation. 2012. V. 73(1). Pp. 89—95.
8. Чертищев В.Ю., Далин М.А., Бойчук А.С., Краснов И.С. Обзор статистических методов оценки вероятности обнаружения дефектов при неразрушающем контроле // В мире неразрушающего контроля. 2021. № 2(92) Т. 24. С. 4—14.
9. Yew-Meng Koh, Meeker W.Q. Quantile POD for Nondestructive Evaluation with Hit-miss Data // Research in Nondestructive Evaluation. 2017. V. 30(2). Pp. 89—111.
10. Гетман А.Ф. Теории и технологии обеспечения прочности технических объектов. М.: Нестор—История, 2019.
11. Кузьмин Д.А., Кузьмичевский А.Ю., Верташенок М.В. Остаточная дефектность и вероятность существования дефектов с размером, превышающим допускаемое значение // Строительная механика инженерных конструкций и сооружений. 2020. Т. 16. № 5. C. 414—423.
12. Кузьмин Д.А. Метод определения надежности оборудования с трещиной в различных режимах эксплуатации // Тяжелое машиностроение. 2021. №4. C. 20—25.
13. Кузьмин Д.А., Верташенок М.В. Вероятность существования дефектов, приводящих к разрушению сосуда давления без возникновения течи // Строительная механика инженерных конструкций и сооружений. 2021. Т. 17. № 2. С. 199—213.
14. Кузьмин Д.А. Исследование остаточной дефектности с использованием методов теории вероятностей // Заводская лаборатория. Диагностика материалов. 2021. Т. 87. № 9. С. 44—49.
15. Трощенко В.Т., Сосновский Л.А. Сопротивление усталости металлов и сплавов. Ч. 1. Киев: Наукова думка. 1987.
16. Матвиенко Ю Г., Кузьмин Д.А., Резников Д.О., Потапов В.В. Оценка вероятности усталостного разрушения конструкционных элементов с учетом статистического разброса механических характеристик прочности материала и остаточной дефектности // Проблемы машиностроения и надежности машин. 2021. № 4. С. 26—36.
17. РБ-101—16. Рекомендации по применению риск-информативного метода при обосновании риск-информативных решений, связанных с безопасностью блока атомной станции.
---
Для цитирования: Кузьмин Д.А., Верташенок М.В., Толкачев О.С. Определение периодичности неразрушающего контроля металла малодефектного оборудования и трубопроводов атомных станций на основании риск-ориентированного подхода // Вестник МЭИ. 2023. № 5. С. 122—128. DOI: 10.24160/1993-6982-2023-5-122-128
#
1. NP-084-15. Pravila Kontrolya Osnovnogo Metalla, Svarnykh Soedineniy i Naplavlennykh Poverkhnostey pri Ekspluatatsii Oborudovaniya, Truboprovodov i Drugikh Elementov Atomnykh Stantsiy. (in Russian).
2. MT 1.1.4.02.001.1803—2021. Obosnovanie Dopustimosti Izmeneniya Ob'emov i Periodichnosti Ekspluatatsionnogo Nerazrushayushchego Kontrolya Metalla Oborudovaniya i Truboprovodov Vtorogo Kontura Atomnykh Stantsiy S VVER-1000 I VVER-1200. M.: AO «Kontsern Rosenergoatom», 2021. (in Russian).
3. Witek M. Pipeline Failure Probability Evaluation Based on In-line Inspection. Pipeline Technol. J. 2018;3:16—21.
4. Neganov D.A., Varshitskiy V.M., Belkin A.A., Figarov E.N. Otsenka Veroyatnosti Razrusheniya Uchastka Magistral'nogo Nefteprovoda po Dannym Vnutritrubnoy Diagnostiki. Neftyanoe Khozyaystvo. 2022;5:108—112. (in Russian).
5. Subair Syed Akbar Ali M., Rajagopal P. Probability of Detection (PoD) Curves Based on Weibull Statistics. J. Nondestructive Evaluation. 2018;37(2):20.
6. Alexandrov A. E., Azhder T.B., Bunina L.V., Bikovsky S.S. Computer Program for Calculating Pipelines Destruction Probability. Proc. conf. Data Sci. and Intelligent Systems. 2021;2:718—733.
7. Li M., Spencer F.W., Meeker W.Q. Quantile Probability of Detection: Distinguishing between Uncertainty Variability in Nondestructive Testing. Material Evaluation. 2012;73(1):89—95.
8. Chertishchev V.Yu., Dalin M.A., Boychuk A.S., Krasnov I.S. Obzor Statisticheskikh Metodov Otsenki Veroyatnosti Obnaruzheniya Defektov pri Nerazrushayushchem Kontrole. V Mire Nerazrushayushchego Kontrolya. 2021;2(92);24:4—14. (in Russian).
9. Yew-Meng Koh, Meeker W.Q. Quantile POD for Nondestructive Evaluation with Hit-miss Data. Research in Nondestructive Evaluation. 2017;30(2):89—111.
10. Getman A.F. Teorii i Tekhnologii Obespecheniya Prochnosti Tekhnicheskikh Ob'ektov. M.: Nestor—Istoriya, 2019. (in Russian).
11. Kuz'min D.A., Kuz'michevskiy A.Yu., Vertashenok M.V. Ostatochnaya Defektnost' i Veroyatnost' Sushchestvovaniya Defektov s Razmerom, Prevyshayushchim Dopuskaemoe Znachenie. Stroitel'naya Mekhanika Inzhenernykh Konstruktsiy i Sooruzheniy. 2020;16;5:414—423. (in Russian).
12. Kuz'min D.A. Metod Opredeleniya Nadezhnosti Oborudovaniya s Treshchinoy v Razlichnykh Rezhimakh Ekspluatatsii. Tyazheloe Mashinostroenie. 2021;4:20—25. (in Russian).
13. Kuz'min D.A., Vertashenok M.V. Veroyatnost' Sushchestvovaniya Defektov, Privodyashchikh k Razrusheniyu Sosuda Davleniya bez Vozniknoveniya Techi. Stroitel'naya Mekhanika Inzhenernykh Konstruktsiy i Sooruzheniy. 2021;17;2:199—213. (in Russian).
14. Kuz'min D.A. Issledovanie Ostatochnoy Defektnosti s Ispol'zovaniem Metodov Teorii Veroyatnostey. Zavodskaya Laboratoriya. Diagnostika Materialov. 2021;87;9:44—49. (in Russian).
15. Troshchenko V.T., Sosnovskiy L.A. Soprotivlenie Ustalosti Metallov i Splavov. Ch. 1. Kiev: Naukova Dumka. 1987. (in Russian).
16. Matvienko Yu.G., Kuz'min D.A., Reznikov D.O., Potapov V.V. Otsenka Veroyatnosti Ustalostnogo Razrusheniya Konstruktsionnykh Elementov s Uchetom Statisticheskogo Razbrosa Mekhanicheskikh Kharakteristik Prochnosti Materiala i Ostatochnoy Defektnosti. Problemy Mashinostroeniya i Nadezhnosti Mashin. 2021;4:26—36. (in Russian).
17. RB-101—16. Rekomendatsii po Primeneniyu Risk-informativnogo Metoda pri Obosnovanii Risk-informativnykh Resheniy, Svyazannykh s Bezopasnost'yu Bloka Atomnoy Stantsii. (in Russian)
---
For citation: Kuz’min D.A., Vertashenok M.V., Tolkachev O.S. Determining the Non-Destructive Testing Frequency of the Metal of Slightly Defective NPP Equipment and Pipelines Based on a Risk-oriented Approach. Bulletin of MPEI. 2023;5:122—128. (in Russian). DOI: 10.24160/1993-6982-2023-5-122-128
Published
2023-06-06
Section
Nuclear Power Plants, Fuel Cycle, Radiation Safety (Technical Sciences) (2.4.9)