Consideration of Uncertainty in the Strength Analysis of the VVER Pressure Vessel during Factory Hydraulic Tests

  • Иван [Ivan] Алексеевич [A.] Никитченко [Nikitchenko]
  • Юрий [Yuriy] Борисович [B.] Воробьев [Vorobyev]
  • Алексей [Aleksey] Вадимович [V.] Аванов [Avanov]
Keywords: uncertainty analysis, sensitivity analysis, reactor pressure vessel, computer codes

Abstract

The article addresses the problem of applying the uncertainty and sensitivity analysis methods to strength calculations. Information on the relevance of this problem for ensuring reliable operation of nuclear power facilities with pressurized water reactors is given. All computer codes contain uncertainties, the sources of which are measurement errors and empirical models. The following loading modes were analyzed: factory hydraulic tests and seismic load. The article presents an analysis of stressed states and distribution of plastic deformations for these loading modes. It is shown that along with the statistical distribution close in appearance to the normal one, there are also extreme values that differ significantly from it, with outliers having a low occurrence probability. It has been found that a number of resulting parameters can have a strong variability in the uncertainty analysis, and that high variability coincides with a significant relative maximum deviation from the reference values. A sensitivity analysis for these loading modes is carried out. The analysis results have shown that the Poisson ratio, Young modulus and yield strength have the strongest influence, and so is the tensile strength in the calculations for seismic loads. The obtained study results may be relevant for brittle fracture calculations for the reactor pressure vessel having been in operation for a long period of time in view of accumulation of flaws in the metal and changes in the vessel material properties under the long-term effect of neutron fluence and high temperature.

Information about authors

Иван [Ivan] Алексеевич [A.] Никитченко [Nikitchenko]

Ph.D.-student of Nuclear Power Plants Dept., NRU MPEI, Design Engineer of the 3nd Category of JSC «ZiO-Podolsk», e-mail: NikitchenkoIA@mpei.ru

Юрий [Yuriy] Борисович [B.] Воробьев [Vorobyev]

Ph.D. (Techn.), Assistant Professor of Nuclear Power Plants Dept., NRU MPEI, Leading Researcher of NRC «Kurchatov Institute», e-mail: VorobyevYB@mpei.ru

Алексей [Aleksey] Вадимович [V.] Аванов [Avanov]

Ph.D.-student of Nuclear Power Plants Dept., NRU MPEI, Design Engineer of the 3nd Category of JSC «ZiO-Podolsk», e-mail: AvanovAV@mpei.ru

References

1. Чигарев А.В., Кравчук А.С., Смалюк А.Ф. ANSYS для инженеров. М.: Машиностроение-1, 2004.
2. Mathcad 15.0 [Офиц. сайт] https://www.mathcad.com/ (дата обращения 04.06.2023).
3. Воробьев Ю.Б., Кузнецов В.Д., Мансури М. Оценка влияния неопределённых факторов при анализе аварийных процессов на АЭС с ВВЭР-1000 // Теплоэнергетика. 2006. № 9. С. 16—21.
4. Мансури М. Анализ неопределенностей параметров при моделировании динамических процессов в контурах АЭС с ВВЭР: автореф. дис. … канд. техн. наук. М.: НИУ «МЭИ», 2005.
5. Воробьев Ю.Б., Кузнецов В.Д. Использование современных интегральных кодов для управления безопасностью АЭС // Вестник МЭИ. 2001. № 5. С. 31—37.
6. Seunghyun Eem, In-Kil Choi, Sang Lyul Cha, Shinyoung Kwag. Seismic Response Correlation Coefficient for the Structures, Systems and Components of the Korean Nuclear Power Plant for Seismic Probabilistic Safety Assessment // Annals Nuclear Energy. 2021. V. 150(3). P. 107759.
7. Марков С.И. Сталь марок 15Х2НМФА, 15Х2НМФА-А и 15Х2НМФА класс 1 для корпуса реактора проекта ВВЭР–ТОИ // Тяжелое машиностроение. 2013. № 3. С. 2—5.
8. Хмельницкая АЭС. База данных по ЯППУ, 43-923.203.007.БД.02, ред. 1.
9. ПНАЭ Г-7-002—86. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок.
10. ANSYS Mechanical Theory Guide. Release 14.0. Canonsburg: ANSYS Inc., 2014.
11. ГОСТ 59115.14—21. Обоснование прочности оборудования и трубопроводов атомных энергетических установок. Расчет на сопротивление хрупкому разрушению корпуса водо-водяного энергетического реактора.
12. Семишкин В.П., Богачев А.В., Меркун А.В. Механизмы старения компонентов системы теплоносителя реактора РУ с ВВЭР-1000 и ВВЭР-1200 // Обеспечение безопасности АЭС с ВВЭР: Материалы Междунар. науч.-техн. конф. Подольск: АО ОКБ «Гидропресс», 2017. С. 1—11.
13. Proskuryakov K.N. Scientific Basis for Modeling and Calculation of Acoustic Vibrations in the Nuclear Power Plant Coolant // J. Phys. Conf. Series. 2017. V. 891(1). P. 012182.
---
Для цитирования: Никитченко И.А., Воробьев Ю.Б., Аванов А.В. Учет неопределенности в анализе прочности корпуса реактора ВВЭР при заводских гидроиспытаниях // Вестник МЭИ. 2023. № 5. С. 129—137. DOI: 10.24160/1993-6982-2023-5-129-137
#
1. Chigarev A.V., Kravchuk A.S., Smalyuk A.F. ANSYS dlya Inzhenerov. M.: Mashinostroenie-1, 2004. (in Russian).
2. Mathcad 15.0 [Ofits. Sayt] https://www.mathcad.com/ (Data Obrashcheniya 04.06.2023).
3. Vorob'ev Yu.B., Kuznetsov V.D., Mansuri M. Otsenka Vliyaniya Neopredelennykh Faktorov pri Analize Avariynykh Protsessov na AES s VVER-1000. Teploenergetika. 2006;9:16—21. (in Russian).
4. Mansuri M. Analiz Neopredelennostey Parametrov pri Modelirovanii Dinamicheskikh Protsessov v Konturakh AES s VVER: Avtoref. Dis. … Kand. Tekhn. Nauk. M.: NIU «MEI», 2005. (in Russian).
5. Vorob'ev Yu.B., Kuznetsov V.D. Ispol'zovanie Sovremennykh Integral'nykh Kodov dlya Upravleniya Bezopasnost'yu AES. Vestnik MEI. 2001;5:31—37. (in Russian).
6. Seunghyun Eem, In-Kil Choi, Sang Lyul Cha, Shinyoung Kwag. Seismic Response Correlation Coefficient for the Structures, Systems and Components of the Korean Nuclear Power Plant for Seismic Probabilistic Safety Assessment. Annals Nuclear Energy. 2021;150(3):107759.
7. Markov S.I. Stal' Marok 15KH2NMFA, 15KH2NMFA-A i 15KH2NMFA Klass 1 dlya Korpusa Reaktora Proekta VVER–TOI. Tyazheloe Mashinostroenie. 2013;3:2—5. (in Russian).
8. Khmel'nitskaya AES. Baza Dannykh po YAPPU, 43-923.203.007.BD.02, Red. 1. (in Russian).
9. PNAE G-7-002—86. Normy Rascheta na Prochnost' Oborudovaniya i Truboprovodov Atomnykh Energeticheskikh Ustanovok. (in Russian).
10. ANSYS Mechanical Theory Guide. Release 14.0. Canonsburg: ANSYS Inc., 2014.
11. GOST 59115.14—21. Obosnovanie Prochnosti Oborudovaniya i Truboprovodov Atomnykh Energeticheskikh Ustanovok. Raschet na Soprotivlenie Khrupkomu Razrusheniyu Korpusa Vodo-vodyanogo Energeticheskogo Reaktora. (in Russian).
12. Semishkin V.P., Bogachev A.V., Merkun A.V. Mekhanizmy Stareniya Komponentov Sistemy Teplonositelya Reaktora RU s VVER-1000 i VVER-1200. Obespechenie Bezopasnosti AES s VVER: Materialy Mezhdunar. Nauch.-tekhn. Konf. Podol'sk: AO OKB «Gidropress», 2017:1—11. (in Russian).
13. Proskuryakov K.N. Scientific Basis for Modeling and Calculation of Acoustic Vibrations in the Nuclear Power Plant Coolant. J. Phys. Conf. Series. 2017;891(1):012182
---
For citation: Nikitchenko I.A., Vorobyev Yu.B., Avanov A.V. Consideration of Uncertainty in the Strength Analysis of the VVER Pressure Vessel during Factory Hydraulic Tests. Bulletin of MPEI. 2023;5:129—137. (in Russian). DOI: 10.24160/1993-6982-2023-5-129-137
Published
2023-06-06
Section
Nuclear Power Plants, Fuel Cycle, Radiation Safety (Technical Sciences) (2.4.9)