The Real-time Operating System Capabilities for Control of Power Electronic Devices

  • Александр [Aleksandr] Николаевич [N.] Рожков [Rozhkov]
  • Павел [Pavel] Ахматович [A.] Рашитов [Rashitov]
  • Виктор [Viktor] Витальевич [V.] Кох [Kokh]
  • Ольга [Olga] Васильевна [V.] Дергачева [Dergacheva]
  • Дмитрий [Dmitriy] Васильевич [V.] Мостовой [Mostovoy]
Keywords: real-time operating system, software, control system, power electronic devices

Abstract

The article describes the capabilities of a real-time operating system (RTOS) from the viewpoint of using it to implement the software for control systems of power electronic devices. It is shown that by using the RTOS capabilities in built-in microprocessor systems it is possible to solve such topical tasks imposed on microprocessor control systems of electric power converters as control of power semiconductor switches and converter protection means, analog-to-digital signal conversion, information exchange with a remote terminal via the required interface according to the established protocol, remote control via wireless communication channels, implementation of functions for monitoring and storing measured parameters and events, status indication, etc. The features of using such systems for the cases of applying such RTOS tools as a critical section, queue, and semaphore are noted. It has been determined that the use of an RTOS simplifies significantly the running tasks synchronization and software development processes.

As an example, the article presents a method of implementing software for a power electronic device control system, which involves the use of the FreeRTOS real-time operating system requiring a relatively small amount of memory (20 KB), which is regarded as quite small amount for modern microcontrollers. This system is a hard real-time system; it is freely distributed with an open source code and has all tools and mechanisms necessary for implementing the power electronics converter control tasks.

The proposed approach to software implementation makes it possible to obtain a flexible software architecture, ensure rational use of processor resources, and conveniently divide the software into separate independent tasks and distribute their execution among a team of programmers. The results presented in the article can be used in designing control systems of power electronic devices and other electric power converters.

Information about authors

Александр [Aleksandr] Николаевич [N.] Рожков [Rozhkov]

Ph.D. (Techn.), Assistant Professor of Industrial Electronics Dept., NRU MPEI, e-mail: RozhkovAN@mpei.ru

Павел [Pavel] Ахматович [A.] Рашитов [Rashitov]

Ph.D. (Techn.), Assistant Professor of Industrial Electronics Dept., NRU MPEI, e-mail:
RashitovPA@mpei.ru

Виктор [Viktor] Витальевич [V.] Кох [Kokh]

Design Engineer of the 2nd Category of Engineering Center «New Generation Large Capacity Power Engineering», NRU MPEI

Ольга [Olga] Васильевна [V.] Дергачева [Dergacheva]

Design Engineer of the 2nd Category of Engineering Center «New Generation Large Capacity Power Engineering», NRU MPEI

Дмитрий [Dmitriy] Васильевич [V.] Мостовой [Mostovoy]

Ph.D.-student, Engineer of Industrial Electronics Dept., Design Engineer of the 2nd Category of Engineering Center «New Generation Large Capacity Power Engineering», NRU MPEI

References

1. Zhongting Tang, Yongheng Yang, Blaabjerg F. Power Electronics: the Enabling Technology for Renewable Energy Integration // CSEE J. Power and Energy Systems. 2022. V. 8(1). Pp. 39—52.
2. IEEE 1662—2016. IEEE Recommended Practice for the Design and Application of Power Electronics in Electrical Power Systems.
3. Rashid M.H. Power Electronics — Challenges and Trends // Proc. Intern. Conf. Innovations in Electrical Eng. and Computational Technol. 2017.
4. Przybyła K. e. a. Educational Platform for Remote Power Electronics Laboratory Classes // Proc. IEEE XX Intern. Power Electronics and Motion Control Conf. 2022. Pp. 311—314.
5. Koleff L. e. a. Development of a Modular Open Source Power Electronics Didactic Platform // Proc. IEEE XV Brazilian Power Electronics Conf. and V IEEE Southern Power Electronics Conf.(COBEP/SPEC). Santos, 2019. Pp. 1—6.
6. Barry R. Using the FreeRTOS Real Time Kernel. Nottingham: Real Time Eng. Ltd, 2010.
7. Downey A. The Little Book of Semaphores. London: Green Tea Press, 2005.
8. Arm Ltd. CMSIS-RTOS2 Documentation [Электрон. ресурс] https://arm-software.github.io/CMSIS_5/RTOS2/html/index.html (дата обращения 10.04.2023).
9. AspenCore. Embedded Markets Study [Электрон. ресурс] https://zbook.org/read/a2413_2019-embedded-markets-study.html (дата обращения 10.04.2023).
10. Lencioni L.R., Loubach D.S., Saotome O. A Methodology for Customization of a Real-time Operating System for Embedded Systems // Proc. IEEE XXVIII Intern. Conf. Electronics, Electrical Eng. and Computing. 2021. Pp. 1—4.
11. Chen-Kai Lin, Bow-Yaw Wang. Formal Analysis of FreeRTOS Scheduler on ARM Cortex-M4 Cores. 2022. Pp. 1—14.
12. Fei Guan, Long Peng, Perneel L, Timmerman M. Open Source FreeRTOS as a Case Study in Real-time Operating System Evolution // J. Systems and Software. 2016. V. 118. Pp. 19—35.
13. Lesan A.Y.E., Doumbia M.L., Sicard P. DSP-based Sinusoidal PWM Signal Generation // Proc. Electrical Power and Energy Conf. Montreal, 2009. Pp. 1—6.
14. Andina J.J.R., Arnanz E.D.L.T., Peña M.D.V. FPGAs Fundamentals, Advanced Features, and Applications in Industrial Electronics. Boca Raton: CRC Press, 2017.
---
Для цитирования: Рожков А.Н., Рашитов П.А., Кох В.В., Дергачева О.В., Мостовой Д.В. ТВозможности операционной системы реального времени при решении задач управления устройствами силовой электроники // Вестник МЭИ. 2023. № 6. С. 19—25.DOI: 10.24160/1993-6982-2023-6-19-25
---
Работа выполнена в рамках проекта «Разработка программно-аппаратного комплекса для зарядных станций электромобилей на отечественной компонентной базе силовой и микропроцессорной электроники» при поддержке гранта НИУ «МЭИ» на реализацию программы научных исследований «Приоритет 2030: Технологии будущего» в 2022 — 2024 гг
#
1. Zhongting Tang, Yongheng Yang, Blaabjerg F. Power Electronics: the Enabling Technology for Renewable Energy Integration. CSEE J. Power and Energy Systems. 2022;8(1):39—52.
2. IEEE 1662—2016. IEEE Recommended Practice for the Design and Application of Power Electronics in Electrical Power Systems.
3. Rashid M.H. Power Electronics — Challenges and Trends. Proc. Intern. Conf. Innovations in Electrical Eng. and Computational Technol. 2017.
4. Przybyła K. e. a. Educational Platform for Remote Power Electronics Laboratory Classes. Proc. IEEE XX Intern. Power Electronics and Motion Control Conf. 2022:311—314.
5. Koleff L. e. a. Development of a Modular Open Source Power Electronics Didactic Platform. Proc. IEEE XV Brazilian Power Electronics Conf. and V IEEE Southern Power Electronics Conf.(COBEP/SPEC). Santos, 2019:1—6.
6. Barry R. Using the FreeRTOS Real Time Kernel. Nottingham: Real Time Eng. Ltd, 2010.
7. Downey A. The Little Book of Semaphores. London: Green Tea Press, 2005.
8. Arm Ltd. CMSIS-RTOS2 Documentation [Electron. Resurs] https://arm-software.github.io/CMSIS_5/RTOS2/html/index.html (Data Obrashcheniya 10.04.2023).
9. AspenCore. Embedded Markets Study [Electron. Resurs] https://zbook.org/read/a2413_2019-embedded-markets-study.html (Data Obrashcheniya 10.04.2023).
10. Lencioni L.R., Loubach D.S., Saotome O. A Methodology for Customization of a Real-time Operating System for Embedded Systems. Proc. IEEE XXVIII Intern. Conf. Electronics, Electrical Eng. and Computing. 2021:1—4.
11. Chen-Kai Lin, Bow-Yaw Wang. Formal Analysis of FreeRTOS Scheduler on ARM Cortex-M4 Cores. 2022:1—14.
12. Fei Guan, Long Peng, Perneel L, Timmerman M. Open Source FreeRTOS as a Case Study in Real-time Operating System Evolution. J. Systems and Software. 2016;118:19—35.
13. Lesan A.Y.E., Doumbia M.L., Sicard P. DSP-based Sinusoidal PWM Signal Generation. Proc. Electrical Power and Energy Conf. Montreal, 2009:1—6.
14. Andina J.J.R., Arnanz E.D.L.T., Peña M.D.V. FPGAs Fundamentals, Advanced Features, and Applications in Industrial Electronics. Boca Raton: CRC Press, 2017
---
For citation: Rozhkov A.N., Rashitov P.A., Kokh V.V, Dergacheva O.V., Mostovoy D.V. The Real-time Operating System Capabilities for Control of Power Electronic Devices. Bulletin of MPEI. 2023;6:19—25. DOI: 10.24160/1993-6982-2023-6-19-25
---
The work is executed within the Framework of the Project «Development of a Software and Hardware Complex for Electric Vehicle Charging Stations on the Domestic Component Base of Power and Microprocessor Electronics» with the Support of a Grant From the National Research University «MPEI» for the Implementation of the Research Program «Priority 2030: Technologies of the Future» in 2022 — 2024
Published
2023-09-05
Section
Theoretical and applied electrical engineering (technical sciences) (2.4.1.)