Bulk Heating and Surface Evaporation of Nanofluids under Solar Radiation

  • Куок Тхинь [Quoc Thinh] Чан [Tran]
  • Александр [Aleksandr] Сергеевич [S.] Дмитриев [Dmitriev]
Keywords: nanofluid, surface evaporation, bulk heating, optical properties, mathematical model, solar thermal power engineering

Abstract

The heating and evaporation processes of various distilled water-based nanofluids are studied theoretically and experimentally. A mathematical model for heating of nanofluids consisting of spherical nanoparticles has been developed for preliminarily assessing the efficiency of heating them by solar radiation. The model developed is a homogeneous system the optical properties of which are described based on Rayleigh scattering. In the course of the theoretical study, the heating rates were calculated, and the temperature distribution over the nanofluid depth was obtained as a function of various parameters, including the concentration and size of nanoparticles, the incident radiation intensity, etc. The experimental study of heating and surface evaporation of nanofluids prepared on the basis of oxide and carbon nanomaterials was carried out under laboratory conditions using a solar simulator. As a result, data on the mass flux of the liquid evaporated and the variation with time of the nanofluid temperature and the nanoparticle concentration were obtained. The experimental results have shown that the contribution of nanoparticles to the solar radiation absorption in the infrared wavelength band is relatively small, and that it is the basic fluid (water) that plays the main role in the absorption of radiation in this band. The theoretical model successfully predicted the nanofluid heating process development trend and demonstrated the heating rate variation pattern depending on the series of parameters. At the same time, theoretical calculations showed a reduced heating efficiency of the nanofluids considered by almost a factor of two in comparison with that seen in the experiments. This is attributed in the main to the approximation and assumptions adopted in determining the thermophysical and optical properties of nanofluids. The latter ones involve certain difficulty, and several approaches are required to evaluate them. The results obtained in this work will serve as the basis for developing a more accurate mathematical model and continuing research into the nanofluid heating process in different modes to determine the optimal mode for the conversion of solar radiation into heat and/or vapor in solar thermal power engineering.

Information about authors

Куок Тхинь [Quoc Thinh] Чан [Tran]

Ph.D.-student, Assistant of Low Temperatures Dept., NRU MPEI, e-mail: tranqth.96@gmail.com

Александр [Aleksandr] Сергеевич [S.] Дмитриев [Dmitriev]

Dr.Sci. (Techn.), Professor of Low Temperatures Dept., NRU MPEI, e-mail: asdmitriev@mail.ru

References

1. Дмитриев А.С., Клименко А.В. Преобразование солнечного излучения в пар — новые возможности на основе наноматериалов (обзор) // Теплоэнергетика. 2020. № 2. С. 1—16.
2. Dmitriev A.S. Hybrid Graphene Nanocomposites: Thermal Interface Materials and Functional Energy Materials // Graphene Production and Appl. IntechOpen, 2019.
3. Guo Y. e. a. Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation // Nano Letters. 2019. V. 19(4). Pp. 2530—2536.
4. Zhou X., Guo Y., Zhao F., Yu G. Hydrogels as an Emerging Material Platform for Solar Water Purification // Accounts of Chemical Research. 2019. V. 52(11). Pp. 3244—3253.
5. Yang J. e. a. Wood-based Solar Interface Evaporation Device with Self-desalting and High Antibacterial Activity for Efficient Solar Steam Generation // ACS Appl. Mater. Interfaces 2020. V. 12(41). Pp. 47029—47037.
6. Jin X. e. a. Nanomaterial Design for Efficient Solar-Driven Steam Generation // ACS Appl. Energy Materials. 2019. V. 2(9). Pp. 6112—6126.
7. Кузьменков Д.М. Кипение мелкодисперсных суспензий под действием теплового излучения: дис. ... канд. техн. наук. М.: НИЯУ МИФИ, 2022.
8. Li X. e. a. Measuring Conversion Efficiency of Solar Vapor Generation // Joule. 2019. V. 3(8). Pp. 1798—1803.
9. Akilu S. e. a. A Review of Thermophysical Properties of Water Based Composite Nanofluids // Renewable and Sustainable Energy Rev. 2016. V. 66. Pp. 654—678.
10. Gorji Tahereh B., Ranjbar A.A., Mirzababaei S.N. Optical properties of Carboxyl Functionalized Carbon Nanotube Aqueous Nanofluids as Direct Solar Thermal Energy Absorbers // Solar Energy. 2015. V. 119. Pp. 332—342.
11. Trong Tam Nguyen e. a. Carbon Nanomaterial-based Nanofluids for Direct Thermal Solar Absorption // Nanomaterials. 2020. V. 10(6). P. 1199.
12. Traciak J. e. a. Surface and Optical Properties of Ethylene Glycol-based Nanofluids Containing Silicon Dioxide Nanoparticles: an Experimental Study // J. Thermal Analysis and Calorimetry. 2022. V. 147. Pp. 7665—7673.
13. Бабичев А.П. и др. Физические величины. М.: Энергоатомиздат, 1991.
14. Vasiliev O.O. e. a. Special Features of the Heat Capacity of Detonation Nanocrystalline Diamond // J. Superhard Materials. 2015. V. 37(6). Pp. 388—393.
15. Gimeno F.A. On the Use of Nanofluids to Enhance the Direct Absorption of Solar Radiation. Castello de la Plana: Jaume I University, 2019.
16. Sajid H.M. e. a. Spotlight on Available Optical Properties and Models of Nanofluids: a Review // Renewable and Sustainable Energy Rev. 2015. V. 43. Pp. 750—762.
17. Said, Z., Saidur R., Rahim N.A. Optical Properties of Metal Oxides Based Nanofluids // Intern. Communications in Heat and Mass Transfer. 2014. V. 59. Pp. 46—54.
18. Ding T., Zhou Y., Ong W., Ho G. Hybrid Solar-driven Interfacial Evaporation Systems: Beyond Water Production Towards High Solar Energy Utilization // Materials Today. 2021. V. 42. Pp. 178—191.
19. Awais M. e. a. Synthesis, Heat Transport Mechanisms and Thermophysical Properties of Nanofluids: a Critical Overview // Intern. J. Thermofluids. 2021. V. 10. P. 100086.
20. Panduro E.A.C. e. a. A Review of the Use of Nanofluids as Heat-transfer Fluids in Parabolic-trough Collectors // Appl. Thermal Eng. 2022. V. 211. P. 118346.
21. Lee Y., Jeong H., Sung Y. Thermal Absorption Performance Evaluation of Water-based Nanofluids (CNTs, Cu, and Al2O3) for Solar Thermal Harvesting // Energies. 2021. V. 14(16). P. 4875.
---
Для цитирования: Чан Куок Тхинь, Дмитриев А.С. Объемный нагрев и поверхностное испарение наножидкостей под воздействием солнечного излучения // Вестник МЭИ. 2023. № 6. С. 110—119. DOI: 10.24160/1993-6982-2023-6-110-119
---
Работа выполнена при поддержке Российского научного фонда (проект № 23-19-00840) https://rscf.ru/project/23-19-00840/
#
1. Dmitriev A.S., Klimenko A.V. Preobrazovanie Solnechnogo Izlucheniya v Par —Novye Vozmozhnosti na Osnove Nanomaterialov (Obzor). Teploenergetika. 2020;2:1—16. (in Russian).
2. Dmitriev A.S. Hybrid Graphene Nanocomposites: Thermal Interface Materials and Functional Energy Materials. Graphene Production and Appl. IntechOpen, 2019.
3. Guo Y. e. a. Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation. Nano Letters. 2019;19(4):2530—2536.
4. Zhou X., Guo Y., Zhao F., Yu G. Hydrogels as an Emerging Material Platform for Solar Water Purification. Accounts of Chemical Research. 2019;52(11):3244—3253.
5. Yang J. e. a. Wood-based Solar Interface Evaporation Device with Self-desalting and High Antibacterial Activity for Efficient Solar Steam Generation. ACS Appl. Mater. Interfaces 2020;12(41):47029—47037.
6. Jin X. e. a. Nanomaterial Design for Efficient Solar-Driven Steam Generation. ACS Appl. Energy Materials. 2019;2(9):6112—6126.
7. Kuz'menkov D.M. Kipenie Melkodispersnykh Suspenziy pod Deystviem Teplovogo Izlucheniya: Dis. ... Kand. Tekhn. Nauk. M.: NIYAU MIFI, 2022. (in Russian).
8. Li X. e. a. Measuring Conversion Efficiency of Solar Vapor Generation. Joule. 2019;3(8):1798—1803.
9. Akilu S. e. a. A Review of Thermophysical Properties of Water Based Composite Nanofluids. Renewable and Sustainable Energy Rev. 2016;66:654—678.
10. Gorji Tahereh B., Ranjbar A.A., Mirzababaei S.N. Optical properties of Carboxyl Functionalized Carbon Nanotube Aqueous Nanofluids as Direct Solar Thermal Energy Absorbers. Solar Energy. 2015;119:332—342.
11. Trong Tam Nguyen e. a. Carbon Nanomaterial-based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials. 2020;10(6):1199.
12. Traciak J. e. a. Surface and Optical Properties of Ethylene Glycol-based Nanofluids Containing Silicon Dioxide Nanoparticles: an Experimental Study. J. Thermal Analysis and Calorimetry. 2022;147:7665—7673.
13. Babichev A.P. i dr. Fizicheskie Velichiny. M.: Energoatomizdat, 1991. (in Russian).
14. Vasiliev O.O. e. a. Special Features of the Heat Capacity of Detonation Nanocrystalline Diamond. J. Superhard Materials. 2015;37(6):388—393.
15. Gimeno F.A. On the Use of Nanofluids to Enhance the Direct Absorption of Solar Radiation. Castello de la Plana: Jaume I University, 2019.
16. Sajid H.M. e. a. Spotlight on Available Optical Properties and Models of Nanofluids: a Review. Renewable and Sustainable Energy Rev. 2015;43:750—762.
17. Said, Z., Saidur R., Rahim N.A. Optical Properties of Metal Oxides Based Nanofluids. Intern. Communications in Heat and Mass Transfer. 2014;59:46—54.
18. Ding T., Zhou Y., Ong W., Ho G. Hybrid Solar-driven Interfacial Evaporation Systems: Beyond Water Production Towards High Solar Energy Utilization. Materials Today. 2021;42:178—191.
19. Awais M. e. a. Synthesis, Heat Transport Mechanisms and Thermophysical Properties of Nanofluids: a Critical Overview. Intern. J. Thermofluids. 2021;10:100086.
20. Panduro E.A.C. e. a. A Review of the Use of Nanofluids as Heat-transfer Fluids in Parabolic-trough Collectors. Appl. Thermal Eng. 2022;211. P. 118346.
21. Lee Y., Jeong H., Sung Y. Thermal Absorption Performance Evaluation of Water-based Nanofluids (CNTs, Cu, and Al2O3) for Solar Thermal Harvesting. Energies. 2021;14(16):4875
---
For citation: Tran Quoc Thinh, Dmitriev A.S. Bulk Heating and Surface Evaporation of Nanofluids under Solar Radiation. Bulletin of MPEI. 2023;6:110—119. (in Russian). DOI: 10.24160/1993-6982-2023-6-110-119
---
The work is executed at support: Russian Science Foundation (Project No. 23-19-00840) https://rscf.ru/project/23-19-00840/
Published
2023-09-05
Section
Theoretical and Applied Heat Engineering (Technical Sciences) (2.4.6)