A Speed Measurement Algorithm for an Incremental Encoder Based on Pulse Period Measurement Using a Digital Filter

  • Алексей [Aleksey] Сергеевич [S.] Анучин [Anuchin]
  • Валентина [Valentina] Сергеевна [S.] Подзорова [Podzorova]
  • Юлия [Yuliya] Константиновна [K.] Каземирова [Kazemirova]
  • Дмитрий [Dmitriy] Игоревич [I.] Савкин [Savkin]
  • Максим [Maksim] Михайлович [M.] Лашкевич [Lashkevich]
  • Чен [Chen] Хао [Xao]
  • Галина [Galina] Львовна [L.] Демидова [Demidova]
Keywords: incremental encoder, microcontroller, period measurement method, speed measurement, sinc3 filter

Abstract

Precise rotor speed measurement is a must for machine tool spindle drives and other drives that shall comply with stringent requirements for speed stabilization accuracy. These drives are commonly equipped with incremental encoders, which determine speed as a time derivative of the displacement. Currently, the best solution for speed measurement is to use a constant elapse time method, the accuracy of which is limited by the encoder accuracy and the elapse time measurement quantization. However, the constant elapse time method ignores all intermediate data on the pulses arriving from the encoder and uses only those required to measure the speed at the current moment. An analysis of the periods (time intervals) between the pulses from the encoder has shown that these periods have the properties of delta-sigma modulated signals. Thus, it was suggested to process the results of the period-based speed measurement method using a high-order digital sinc filter to obtain additional information from the incoming data. The proposed period-based method involves a third-order sinc filter as the filtration type most commonly used in measurement equipment. To demonstrate the efficiency of the proposed method, a simulation model was developed, which shows the error distribution for the suggested and classical methods considered in the study. The experimental results have been obtained both for a steady operation mode and for the drive speeding-up mode. The methods have been compared for the same input data and the same measurement time. The simulation and experimental results have shown that at high speeds the proposed period-based method with sinc3 filtering provides a much smaller r.m.s. deviation from the actual value than the other methods. The computational complexity of the proposed method was analyzed, and a conclusion can be drawn from the analysis results that it can be implemented using modern microcontrollers.

Information about authors

Алексей [Aleksey] Сергеевич [S.] Анучин [Anuchin]

Dr.Sci. (Techn.), Professor, Head of Automated Electric Drive Dept., NRU MPEI, General Director of LLC «MIP Vector», e-mail: anuchin.alecksey@gmail.com

Валентина [Valentina] Сергеевна [S.] Подзорова [Podzorova]

Ph.D. (Techn.), Engineer of Automated Electric Drive Dept., NRU MPEI, Leading Design Engineer of LLC «NPF Vector», e-mail: astakhovavalentina94@gmail.com

Юлия [Yuliya] Константиновна [K.] Каземирова [Kazemirova]

Ph.D. (Techn.), Engineer of Automated Electric Drive Dept., NRU MPEI, Software Engineer of the 1st Category of LLC «NPF Vector», e-mail: KazemirovaYK@mpei.ru

Дмитрий [Dmitriy] Игоревич [I.] Савкин [Savkin]

Senior Lecturer of Automated Electric Drive Dept., NRU MPEI, Leading Software Engineer of the 1st Category, Project Coordinator of LLC «NPF Vector», e-mail: SavkinDmI@mpei.ru

Максим [Maksim] Михайлович [M.] Лашкевич [Lashkevich]

Ph.D. (Techn.), Engineer of Automated Electric Drive Dept., NRU MPEI», Deputy Head of the Software Development Dept., Leading Software Engineer of LLC «NPF Vector»

Чен [Chen] Хао [Xao]

Dr.Sci. (Techn.), Professor of the Chinese University of Mining and Technology, Xuzhou, China, e-mail: hchen@cumt.edu.cn

Галина [Galina] Львовна [L.] Демидова [Demidova]

Ph.D. (Techn.), Assistant Professor, Chief Engineer of Electrical Engineering and Precision Electromechanical Systems Dept., ITMO University, Researcher at the International Scientific Laboratory of Power Electronics and Automated Electric Drive, ITMO University, St. Petersburg, e-mail: demidova@itmo.ru

References

1. Soshi M., Ishii S., Yamazaki K. A Study on the Effect of Rotational Dynamic Characteristics of a Machine Tool Spindle Drive on Milling Processes // Proc. CIRP. 2012. V. 1. Pp. 319—324. DOI: 10.1016/j.procir.2012.04.057.
2. Guo E. e. a. Research on the Cutting Mechanisms of Cylindrical Gear Power Skiving // J. Advanced Manufacturing Technol. 2015. V. 79. Pp. 541—550. DOI: 10.1007/s00170-015-6816-9.
3. Aksonov Y. e. a. The Motion Differential Characteristics Estimation Using Incremental Encoders in the CNC Feedback Loop // Proc. IEEE III KhPI Week on Advanced Technol. 2022. Pp. 1—6. DOI: 10.1109/KhPIWeek57572.2022.9916428.
4. Дадаян Г.Л., Чигвинцев С.В. Датчики положения вала электродвигателя // Электропривод, электротехнологии и электрооборудование предприятий: Сб. науч. тр. IV Междунар. науч.-техн. конф. Уфа: Уфимский гос. нефтяной техн. ун-т, 2019. С. 174—177.
5. Briz F., Cancelas J.A., Diez A. Speed Measurement Using Rotary Encoders for High Performance AC Drives // Proc. XX Annual Conf. IEEE Industrial Electronics. 1994. V. 1. Pp. 538—542. DOI: 10.1109/IECON.1994.397844.
6. Petrella R., Tursini M., Peretti L., Zigliotto M. Speed Measurement Algorithms for Low-resolution Incremental Encoder Equipped Drives: a Comparative Analysis // Proc. Intern. Aegean Conf. Electrical Machines and Power Electronics. 2007. Pp. 780—787. DOI: 10.1109/ACEMP.2007.4510607.
7. V'azquez-Guti'errez Y., O'Sullivan D.L., Kavanagh R.C. Small-signal Modeling of the Incremental Optical Encoder for Motor Control // IEEE Trans. Industrial Electronics. 2020. V. 67(5). Pp. 3452—3461. DOI: 10.1109/TIE.2019.2916307.
8. Yi-Fan Zhao, Yan F., Chang-Qing Du. Fast Start-up Control Method of PMSM Based on Incremental Photoelectric Encoder // Proc. IET Intern. Conf. Information Sci. and Control Eng. 2012. Pp. 1—4. DOI: 10.1049/cp.2012.2342.
9. Kavanagh R.C. Improved Digital Tachometer with Reduced Sensitivity to Sensor Nonideality // IEEE Trans. Industrial Electronics. 2000. V. 47(4). Pp. 890—897. DOI: 10.1109/41.857969.
10. Anuchin A., Dianov A., Briz F. Synchronous Constant Elapsed Time Speed Estimation Using Incremental Encoders // IEEE/ASME Trans. Mechatronics. 2019. V. 24(4). Pp. 1893—1901. DOI: 10.1109/TMECH.2019.2928950.
11. Анучин А.С. и др. Оптимизированный синхронный метод измерения частоты вращения с помощью инкрементального датчика положения // Промышленная энергетика. 2018. № 7. С. 11—22.
12. Ostkotte S., Peters C., Hüning F., Bragard M. Design, Implementation and Verification of an Rotational Incremental Position Encoder based on the Magnetic Wiegand Effect // Proc. Elektro Conf. Krakow, 2022. Pp. 1—6. DOI: 10.1109/ELEKTRO53996.2022.9803477.
13. Ilmiawan A.F. e. a. An Easy Speed Measurement for Incremental Rotary Encoder Using Multi Stage Moving Average Method // Proc. Intern. Conf. Electrical Engineering and Computer Sci. Kuta, 2014. Pp. 363—368. DOI: 10.1109/ICEECS.2014.7045279.
14. Buhai S., Shipeng T. A Transmission Algorithm Applicable to Incremental and Absolute Encoder and Its Implementation // Proc. II Intern. Conf. Advanced Robotics and Mechatronics. Hefei and Tai'an, 2017. Pp. 299—304. DOI: 10.1109/ICARM.2017.8273178.
15. Ohmae T., Matsuda T., Kamiyama K., Tachikawa M. A Microprocessor-controlled High-accuracy Wide-range Speed Regulator for Motor Drives // IEEE Trans. Ind. Electron. 1982. V. IE-29. No. 3. Pp. 207—211.
16. Bonert R. Digital Tachometer with Fast Dynamic Response Implemented by a Microprocessor // IEEE Trans. Ind. Appl. 1983. V. IA-19. No. 6. Pp. 1052—1056.
17. Lygouras J.N., Pachidis T.P., Tarchanidis K.N., Kodogiannis V.S. Adaptive High-performance Velocity Evaluation Based on a High-resolution Time-to-digital Converter // IEEE Trans. Instrumentation and Measurement. 2008. V. 57(9). Pp. 2035—2043. DOI: 10.1109/TIM.2008.919039.
18. Hace A., Čurkovič M. Accurate FPGA-based Velocity Measurement with an Incremental Encoder by a Fast Generalized Divisionless MT-type Algorithm // Sensors. 2018. V. 18(10). P. 3250. DOI: 10.3390/s18103250.
19. Negrea AC., Imecs M., Incze I.L., Pop A., Szabo C. Error Compensation Methods in Speed Identification Using Incremental Encoder // Proc. Intern. Conf. and Exposition Electrical and Power Eng. Iaşi, 2012. Pp. 441—445. DOI: 10.1109/ICEPE.2012.6463857.
20. Lee Y., Kim S.H., Lee S.-H., Chung C.C. Encoder Calibration Method for High Precision Servo Systems with a Sinusoidal Encoder // IEEE Trans. Industrial Electronics. 2022. V. 69(1). Pp. 752—762. DOI: 10.1109/TIE.2021.3051599.
21. Bertoni R., Andre H. Comparison of Incremental Encoders in Order to Improve IAS Based Diagnosis // Proc. Prognostics and Health Management Conf. 2020. Pp. 157—162. DOI: 10.1109/PHM-Besancon49106.2020.00033.
22. Emura T., Wang L. A High-resolution Interpolator for Incremental Encoders Based on the Quadrature PLL Method // IEEE Trans. Industrial Electronics. 2000. V. 47(1). Pp. 84—90. DOI: 10.1109/41.824129.
23. Lee C.-H., Huang H.-J., Chang J.-P., Chen Y.-C. Incremental Optical Encoder Based on a Sinusoidal Transmissive Pattern // IEEE Photonics J. 2022. V. 14(1). Pp. 1—6. DOI: 10.1109/JPHOT.2021.3129820.
24. Kazemirova Yu. e. a. Speed Estimation Applying Sinc-filter to a Period-based Method for Incremental Position Encoder // Proc. 54th Intern. Universities Power Eng. Conf. 2019. Pp. 1—4. DOI: 10.1109/UPEC.2019.8893535.
25. Schreier R., Second and Higher-order Delta-sigma Modulators [Электрон. ресурс] https://classes.engr.oregonstate.edu/eecs/spring2021/ece627/Lecture%20Notes/2nd%20&%20Higher-Order2.pdf (дата обращения 08.10.2023).
26. Подзорова В.С. Исследование и обработка дельта-сигма модулированных сигналов в системах управления электроприводов: дисс. … канд. техн. наук. М.: НИУ «МЭИ», 2022.
27. Gerosa A., Neviani A. A Low-power Decimation Filter for a Sigma-delta Converter Based on a Power-optimized Sinc Filter // Proc. IEEE Intern. Symp. Circuits and Systems. Vancouver, 2004. P. II-245. DOI: 10.1109/ISCAS.2004.1329254.
28. Anuchin A. Surnin, D., Lashkevich M. Accuracy Analysis of Shunt Current Sensing by Means of Delta-sigma Modulation in Electric Drives // Proc. XVII Intern. Ural Con. on AC Electric Drives. Ekaterinburg, 2018. Pp. 1—5. DOI: 10.1109/ACED.2018.8341706.
29. Ilmiawan A.F. e. a. An Easy Speed Measurement for Incremental Rotary Encoder Using Multi Stage Moving Average Method // Proc. Intern. Conf. Electrical Eng. and Computer Sci. 2014. Pp. 363—368. DOI: 10.1109/ICEECS.2014.7045279.
30. Briz F., Cancelas J.A., Diez A. Speed Measurement Using Rotary Encoders for High Performance AC Drives // Proc. XX Annual Conf. IEEE Industrial Electronics. 1994. V. 1. Pp. 538—542. DOI: 10.1109/IECON.1994.397844.
---
Для цитирования: Анучин А.С, Подзорова В.С, Каземирова Ю.К., Савкин Д.И., Лашкевич М.М, Чен Х., Демидова Г.Л. Алгоритм измерения скорости для инкрементального датчика положения на основе измерения периода импульсов с использованием цифрового фильтра // Вестник МЭИ. 2024. № 2. С. 11—26. DOI: 10.24160/1993-6982-2024-2-11-26
---
Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках Государственного задания № FSWF-2023-0017 (Соглашение № 075-03-2023-383 от 18 января 2023 г.) в сфере научной деятельности на 2023 — 2025 гг.
#
1. Soshi M., Ishii S., Yamazaki K. A Study on the Effect of Rotational Dynamic Characteristics of a Machine Tool Spindle Drive on Milling Processes. Proc. CIRP. 2012;1:319—324. DOI: 10.1016/j.procir.2012.04.057.
2. Guo E. e. a. Research on the Cutting Mechanisms of Cylindrical Gear Power Skiving. J. Advanced Manufacturing Technol. 2015;79:541—550. DOI: 10.1007/s00170-015-6816-9.
3. Aksonov Y. e. a. The Motion Differential Characteristics Estimation Using Incremental Encoders in the CNC Feedback Loop. Proc. IEEE III KhPI Week on Advanced Technol. 2022:1—6. DOI: 10.1109/KhPIWeek57572.2022.9916428.
4. Dadayan G.L., Chigvintsev S.V. Datchiki Polozheniya Vala Elektrodvigatelya. Elektroprivod, Elektrotekhnologii i Elektrooborudovanie Predpriyatiy: Sb. Nauch. Tr. IV Mezhdunar. Nauch.-tekhn. Konf. Ufa: Ufimskiy Gos. Neftyanoy Tekhn. Un-t, 2019:174—177. (in Russian).
5. Briz F., Cancelas J.A., Diez A. Speed Measurement Using Rotary Encoders for High Performance AC Drives. Proc. XX Annual Conf. IEEE Industrial Electronics. 1994;1:538—542. DOI: 10.1109/IECON.1994.397844.
6. Petrella R., Tursini M., Peretti L., Zigliotto M. Speed Measurement Algorithms for Low-resolution Incremental Encoder Equipped Drives: a Comparative Analysis. Proc. Intern. Aegean Conf. Electrical Machines and Power Electronics. 2007:780—787. DOI: 10.1109/ACEMP.2007.4510607.
7. V'azquez-Guti'errez Y., O'Sullivan D.L., Kavanagh R.C. Small-signal Modeling of the Incremental Optical Encoder for Motor Control. IEEE Trans. Industrial Electronics. 2020;67(5):3452—3461. DOI: 10.1109/TIE.2019.2916307.
8. Yi-Fan Zhao, Yan F., Chang-Qing Du. Fast Start-up Control Method of PMSM Based on Incremental Photoelectric Encoder. Proc. IET Intern. Conf. Information Sci. and Control Eng. 2012:1—4. DOI: 10.1049/cp.2012.2342.
9. Kavanagh R.C. Improved Digital Tachometer with Reduced Sensitivity to Sensor Nonideality. IEEE Trans. Industrial Electronics. 2000;47(4):890—897. DOI: 10.1109/41.857969.
10. Anuchin A., Dianov A., Briz F. Synchronous Constant Elapsed Time Speed Estimation Using Incremental Encoders. IEEE/ASME Trans. Mechatronics. 2019;24(4):1893—1901. DOI: 10.1109/TMECH.2019.2928950.
11. Anuchin A.S. i dr. Optimizirovannyy Sinkhronnyy Metod Izmereniya Chastoty Vrashcheniya s Pomoshch'yu Inkremental'nogo Datchika Polozheniya. Promyshlennaya Energetika. 2018;7:11—22. (in Russian).
12. Ostkotte S., Peters C., Hüning F., Bragard M. Design, Implementation and Verification of an Rotational Incremental Position Encoder based on the Magnetic Wiegand Effect. Proc. Elektro Conf. Krakow, 2022:1—6. DOI: 10.1109/ELEKTRO53996.2022.9803477.
13. Ilmiawan A.F. e. a. An Easy Speed Measurement for Incremental Rotary Encoder Using Multi Stage Moving Average Method. Proc. Intern. Conf. Electrical Engineering and Computer Sci. Kuta, 2014:363—368. DOI: 10.1109/ICEECS.2014.7045279.
14. Buhai S., Shipeng T. A Transmission Algorithm Applicable to Incremental and Absolute Encoder and Its Implementation. Proc. II Intern. Conf. Advanced Robotics and Mechatronics. Hefei and Tai'an, 2017:299—304. DOI: 10.1109/ICARM.2017.8273178.
15. Ohmae T., Matsuda T., Kamiyama K., Tachikawa M. A Microprocessor-controlled High-accuracy Wide-range Speed Regulator for Motor Drives. IEEE Trans. Ind. Electron. 1982;IE-29;3:207—211.
16. Bonert R. Digital Tachometer with Fast Dynamic Response Implemented by a Microprocessor. IEEE Trans. Ind. Appl. 1983;IA-19;6:1052—1056.
17. Lygouras J.N., Pachidis T.P., Tarchanidis K.N., Kodogiannis V.S. Adaptive High-performance Velocity Evaluation Based on a High-resolution Time-to-digital Converter. IEEE Trans. Instrumentation and Measurement. 2008;57(9):2035—2043. DOI: 10.1109/TIM.2008.919039.
18. Hace A., Čurkovič M. Accurate FPGA-based Velocity Measurement with an Incremental Encoder by a Fast Generalized Divisionless MT-type Algorithm. Sensors. 2018;18(10):3250. DOI: 10.3390/s18103250.
19. Negrea AC., Imecs M., Incze I.L., Pop A., Szabo C. Error Compensation Methods in Speed Identification Using Incremental Encoder. Proc. Intern. Conf. and Exposition Electrical and Power Eng. Iaşi, 2012:441—445. DOI: 10.1109/ICEPE.2012.6463857.
20. Lee Y., Kim S.H., Lee S.-H., Chung C.C. Encoder Calibration Method for High Precision Servo Systems with a Sinusoidal Encoder. IEEE Trans. Industrial Electronics. 2022;69(1):752—762. DOI: 10.1109/TIE.2021.3051599.
21. Bertoni R., Andre H. Comparison of Incremental Encoders in Order to Improve IAS Based Diagnosis. Proc. Prognostics and Health Management Conf. 2020:157—162. DOI: 10.1109/PHM-Besancon49106.2020.00033.
22. Emura T., Wang L. A High-resolution Interpolator for Incremental Encoders Based on the Quadrature PLL Method. IEEE Trans. Industrial Electronics. 2000;47(1):84—90. DOI: 10.1109/41.824129.
23. Lee C.-H., Huang H.-J., Chang J.-P., Chen Y.-C. Incremental Optical Encoder Based on a Sinusoidal Transmissive Pattern. IEEE Photonics J. 2022;14(1):1—6. DOI: 10.1109/JPHOT.2021.3129820.
24. Kazemirova Yu. e. a. Speed Estimation Applying Sinc-filter to a Period-based Method for Incremental Position Encoder. Proc. 54th Intern. Universities Power Eng. Conf. 2019:1—4. DOI: 10.1109/UPEC.2019.8893535.
25. Schreier R., Second and Higher-order Delta-sigma Modulators [Elektron. Resurs] https://classes.engr.oregonstate.edu/eecs/spring2021/ece627/Lecture%20Notes/2nd%20&%20Higher-Order2.pdf (Data Obrashcheniya 08.10.2023).
26. Podzorova V.S. Issledovanie i Obrabotka Del'ta-sigma Modulirovannykh Signalov v Sistemakh Upravleniya Elektroprivodov: Diss. … Kand. Tekhn. Nauk. M.: NIU «MEI», 2022 (in Russian).
27. Gerosa A., Neviani A. A Low-power Decimation Filter for a Sigma-delta Converter Based on a Power-optimized Sinc Filter. Proc. IEEE Intern. Symp. Circuits and Systems. Vancouver, 2004:II-245. DOI: 10.1109/ISCAS.2004.1329254.
28. Anuchin A. Surnin, D., Lashkevich M. Accuracy Analysis of Shunt Current Sensing by Means of Delta-sigma Modulation in Electric Drives. Proc. XVII Intern. Ural Con. on AC Electric Drives. Ekaterinburg, 2018:1—5. DOI: 10.1109/ACED.2018.8341706.
29. Ilmiawan A.F. e. a. An Easy Speed Measurement for Incremental Rotary Encoder Using Multi Stage Moving Average Method. Proc. Intern. Conf. Electrical Eng. and Computer Sci. 2014:363—368. DOI: 10.1109/ICEECS.2014.7045279.
30. Briz F., Cancelas J.A., Diez A. Speed Measurement Using Rotary Encoders for High Performance AC Drives. Proc. XX Annual Conf. IEEE Industrial Electronics. 1994;1:538—542. DOI: 10.1109/IECON.1994.397844
---
For citation: Anuchin A.S., Podzorova V.S., Kazemirova Yu.K., Savkin D.I., Lashkevich M.M., Chen H., Demidova G.L. A Speed Measurement Algorithm for an Incremental Encoder Based on Pulse Period Measurement Using a Digital Filter. Bulletin of MPEI. 2024;2:11—26. (in Russian). DOI: 10.24160/1993-6982-2024-2-11-26
---
The work is executed with the Support of the Ministry of Science and Higher Education of the Russian Federation within the Framework of State Assignment No. FSWF-2023-0017 (Agreement No. 075-03-2023-383, January 18, 2023) in the Field of Scientific Activity for 2023 — 2025
Published
2023-12-21
Section
Electrical Complexes and Systems (2.4.2)