The Optimal Configuration of Solar Power Plants and Wind Farms in the Power System of Myanmar

  • Галина [Galina] Владимировна [V.] Дерюгина [Deryugina]
  • Евгений [Evgeniy] Витальевич [V.] Игнатьев [Ignatiev]
  • Тет Мьят [Htet Myat] Тун [Htun]
Keywords: solar power plant, wind farm, integral criterion, non-simultaneous participation, energy efficiency, optimization

Abstract

In integrating wind farms and solar PV power plants into a united energy system, their incorporation into energy complexes with operational dispatch control makes it possible to achieve more reliable electric power generation, smooth the daily and seasonal non-uniformity of electricity generation by energy complexes, etc. The article describes a newly developed methodology for determining the optimal energy complex configuration, with which it becomes possible to use the non-simultaneous arrival of wind and solar resources to the sites of individual wind farms and solar PV power plants in the most efficient way. The problem considered falls under the category of multi-criteria optimization problems and can be resolved by searching through all possible options with assessing their significance using the rank-based method. The practical applicability of the developed methodology is demonstrated taking an energy complex that is part of the Myanmar’s united power system as an example. The energy complex considered includes two solar PV power plants with a total capacity of 60 MW, an onshore wind farm with a capacity of 33 MW, and an offshore wind farm with a capacity of 32 MW. The locations and capacities of the solar PV power plants, and of the onshore wind farm were taken based on the long-term development plan of the Myanmar united power system. The location and parameters of the offshore wind farm were selected by the authors. It is shown that, given the non-simultaneous arrival of the wind and solar resources to the sites of the considered wind farms and solar PV power plants, the optimal energy complex composition is obtained, with a 95% probability, if the combined capacity of the above-mentioned renewable energy sources makes 4.7% of the energy complex’ total installed capacity.

Information about authors

Галина [Galina] Владимировна [V.] Дерюгина [Deryugina]

Senior Lecturer of Hydro Power Engineering and Renewable Energy Sources Dept., NRU MPEI, e-mail: derugina63@mail.ru

Евгений [Evgeniy] Витальевич [V.] Игнатьев [Ignatiev]

Ph.D. (Techn.), Assistant Professor of Hydro Power Engineering and Renewable Energy Sources Dept., NRU MPEI, e-mail: jeniya_ig@mail.ru

Тет Мьят [Htet Myat] Тун [Htun]

Ph.D.-student of Hydro Power Engineering and Renewable Energy Sources Dept., NRU MPEI, e-mail: htetmyat6964@gmail.com

References

1. Myanmar Energy Master Plan [Электрон. ресурс] https://www.burmalibrary.org/sites/burmalibrary.org/files/obl/docs22/2015-12-Myanmar_Energy_Master_Plan-spdf-red.pdf (дата обращения 08.12.2023).
2. Ministry of Electrical Energy [Электрон. ресурс] https://www.moee.gov.mm/en (дата обращения 08.12.2023).
3. Chinese Companies Dominate Myanmar Solar Tender [Электрон. ресурс] https://chinadialogue.net/en/energy/chinese-companies-dominate-myanmar-solar-tender (дата обращения 08.12.2023).
4. Solomon A.A., Child M., Caldera U., Breyer C. Exploiting Wind-solar Resource Complementarity to Reduce Energy Storage Need // AIMS Energy. 2020. V. 8(5). Pp. 749—770.
5. Holttinen H. e. a. Design and Operation of Energy Systems with Large Amounts of Variable Generation: Final Summary Rep. IEA Wind TCP. Task 25. Espoo: VTT Technical Research Centre of Finland, 2021.
6. Child M. e. a. Flexible Electricity Generation, Grid Exchange and Storage for the Transition to a 100% Renewable Energy System in Europe // Renewable Energy. 2019. V. 139. Pp. 80—101.
7. Ernst B., Wan Y.H., Kirby B. Short-term Power Fluctuation of Wind Turbines: Analyzing Data from the German 250-MW Measurement Program from the Ancillary Services Viewpoint. Golden: National Renewable Energy Lab., 1999.
8. Игнатьев Е.В., Дерюгина Г.В., Тягунов М.Г., Тет Мьят Тун. Перспективы оффшорной ветровой энергетики в Республике Союз Мьянма // Вестник МЭИ. 2020. № 5. С. 35—47.
9. The NASA Surface Meteorology and Solar Energy Data Set [Электрон. ресурс] https://searchworks.stanford.edu/view/10556878 (дата обращения 08.12.2023).
10. Wind Turbines Database [Электрон. ресурс] https://en.wind-turbine-models.com/turbines (дата обращения 08.12.2023).
11. IEC 61400-1:2019. Wind Energy Generation Systems. Pt. 1. Design Requirements.
12. ENF Solar [Электрон. ресурс] https://www.enfsolar.com/jinko-solar.com (дата обращения 08.12.2023).
13. Renewable Power Generation Costs in 2020. Abu Dhabi: Intern. Renewable Energy Agency, 2021.
14. Interest Rate [Электрон. ресурс] https://www.cbm.gov.mm/content/3912 (дата обращения 08.12.2023).
15. National Bank [Электрон. ресурс] https://www.macrotrends.net/countries /MMR/myanmar/inflation-rate-cpi (дата обращения 08.12.2023).
---
Для цитирования: Дерюгина Г.В., Игнатьев Е.В., Тет Мьят Тун. Определение оптимальной конфигурации солнечных и ветровых электростанций в составе энергетической системы Мьянмы // Вестник МЭИ. 2024. № 3. С. 31—41. DOI: 10.24160/1993-6982-2024-3-31-41
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Myanmar Energy Master Plan [Elektron. Resurs] https://www.burmalibrary.org/sites/burmalibrary.org/files/obl/docs22/2015-12-Myanmar_Energy_Master_Plan-spdf-red.pdf (Data Obrashcheniya 08.12.2023).
2. Ministry of Electrical Energy [Elektron. Resurs] https://www.moee.gov.mm/en (Data Obrashcheniya 08.12.2023).
3. Chinese Companies Dominate Myanmar Solar Tender [Elektron. Resurs] https://chinadialogue.net/en/energy/chinese-companies-dominate-myanmar-solar-tender (Data Obrashcheniya 08.12.2023).
4. Solomon A.A., Child M., Caldera U., Breyer C. Exploiting Wind-solar Resource Complementarity to Reduce Energy Storage Need. AIMS Energy. 2020;8(5):749—770.
5. Holttinen H. e. a. Design and Operation of Energy Systems with Large Amounts of Variable Generation: Final Summary Rep. IEA Wind TCP. Task 25. Espoo: VTT Technical Research Centre of Finland, 2021.
6. Child M. e. a. Flexible Electricity Generation, Grid Exchange and Storage for the Transition to a 100% Renewable Energy System in Europe. Renewable Energy. 2019;139:80—101.
7. Ernst B., Wan Y.H., Kirby B. Short-term Power Fluctuation of Wind Turbines: Analyzing Data from the German 250-MW Measurement Program from the Ancillary Services Viewpoint. Golden: National Renewable Energy Lab., 1999.
8. Ignat'ev E.V., Deryugina G.V. G, Tyagunov M.G., Tet M'yat Tun. Perspektivy Offshornoy Vetrovoy Energetiki v Respublike Soyuz M'yanma. Vestnik MEI. 2020;5:35—47. (in Russian).
9. The NASA Surface Meteorology and Solar Energy Data Set [Elektron. Resurs] https://searchworks.stanford.edu/view/10556878 (Data Obrashcheniya 08.12.2023).
10. Wind Turbines Database [Elektron. Resurs] https://en.wind-turbine-models.com/turbines (Data Obrashcheniya 08.12.2023).
11. IEC 61400-1(2019). Wind Energy Generation Systems. Pt. 1. Design Requirements.
12. ENF Solar [Elektron. Resurs] https://www.enfsolar.com/jinko-solar.com (Data Obrashcheniya 08.12.2023).
13. Renewable Power Generation Costs in 2020. Abu Dhabi: Intern. Renewable Energy Agency, 2021.
14. Interest Rate [Elektron. Resurs] https://www.cbm.gov.mm/content/3912 (Data Obrashcheniya 08.12.2023).
15. National Bank [Elektron. Resurs] https://www.macrotrends.net/countries /MMR/myanmar/inflation-rate-cpi (Data Obrashcheniya 08.12.2023)
---
For citation: Deryugina G.V., Ignatiev E.V., Htet Myat Htun. The Optimal Configuration of Solar Power Plants and Wind Farms in the Power System of Myanmar. Bulletin of MPEI. 2024;3:31—41. (in Russian). DOI: 10.24160/1993-6982-2024-3-31-41
---
Conflict of interests: the authors declare no conflict of interest
Published
2024-02-20
Section
Energy Systems and Complexes (2.4.5)