Analysis of experiments on the corium-to-water thermal interaction during a severe accident at a VVER/PWR-based NPP

  • Владимир [Vladimir] Игоревич [I.] Мелихов [Melikhov]
  • Олег [Oleg] Игоревич [I.] Мелихов [Melikhov]
  • Никита [Nikita] Александрович [A.] Ртищев [Rtishchev]
  • Артем [Artem] Евгеньевич [E.] Тарасов [Tarasov]
Keywords: thermal interaction, numerical simulation, validation

Abstract

The basic aim of the FARO experimental program is to obtain data on the mechanisms governing thermal interaction between a large mass of high-temperature corium with water through simulating the in-vessel stage of a severe accident at an NPP equipped with VVER/PWRtype reactors. The study is devoted to validating the thermal interaction model used in the SOCRAT/VAPEX-M code. The article presents the system of model equations, including those describing the corium jet dynamics and the corresponding closing relations describing the energy and force interaction between the corium jet and steam--water medium. Special attention is paid to the corium fragmentation models, including the initial corium jet fragmentation model and the so-called model for secondary fragmentation of the produced fragments. The FARO L-14 and L-19 experiments aimed at investigating the corium-to-water thermal interaction were numerically simulated using the SOCRAT/VAPEX-M code. The specific feature of these experiments was that they were carried out at a high initial pressure of around 5 MPa. The experiments differed from each other in the initial water level inside the vessel. Thus, the effect the initial water level has on the thermal interaction process was investigated. The time dependences for the pressure in the vessel, corium cooling rate, and distribution of the produced fragments calculated using the SOCRAT/VAPEX-M code were found to be in good agreement with the experimental data. Qualitative and quantitative agreement between the experimental data and calculation results has been shown, which confirms the adequacy of the thermophysical and hydrodynamic models laid down in the SOCRAT/VAPEX-M code.

Information about authors

Владимир [Vladimir] Игоревич [I.] Мелихов [Melikhov]

Science degree: Dr.Sci. (Techn.)
Workplace Nuclear Power Plants Dept., NRU MPEI
Occupation professor

Олег [Oleg] Игоревич [I.] Мелихов [Melikhov]

Science degree: Dr. Sci. (Phys.-Math.)
Workplace «Electrogorsk Research Centre for the Safety of Nuclear Power Plants»; Nuclear Power Plants Dept., NRU MPEI
Occupation Deputy Director of Scientific Work; Professor

Никита [Nikita] Александрович [A.] Ртищев [Rtishchev]

Workplace Nuclear Power Plants Dept., NRU MPEI
Occupation lead engineer

Артем [Artem] Евгеньевич [E.] Тарасов [Tarasov]

Workplace Nuclear Power Plants Dept., NRU MPEI
Occupation ph.D.-student

References

1. Bolshov L., Strizhov V. SOCRAT: The System of Codes for Realistic Analysis of Severe Accidents // Proc. Intern. Congress on Advances in Nuclear Power Plants. Reno, 2006. P. 1415—1422.
2. Мелихов В.И. и др. Моделирование взаимодействия высокотемпературного расплава материалов активной зоны реактора с теплоносителем // Известия РАН. Сер. «Энергетика». 2007. № 6. С. 11—28.
3. Melikhov V.I., Melikhov O.I., Yakush S.E., Rtishchev N.A. Validation of Fuel-Coolant Interaction Model for Severe Accident Simulations // Sci. and Tech. of Nuclear Installations. 2011. DOI:10.1155/2011/560157.
4. Kolev N.I. Film Boiling in Vertical Plates and Spheres // Experimental Thermal and Fluid Sci. 1998. V. 18. P. 97—115.
5. Saïto M., Sato K., Imahori S. Experimental studies on penetration behaviours of water jet into freon-11 and liquid nitrogen // Nat. Heat transfer Conf. Houston (USA), 1988. P. 173.
6. Pilch M., Erdman C. Use of Break-Up Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Break-up of a Liquid drop // Int. J. Multiphase Flow. 1987. V. 13. P. 741—757.
7. Мелихов О.И., Мелихов В.И., Ртищев Н.А., Тарасов А.Е. Численное моделирование процесса выделения водорода при взаимодействии расплава циркония с водой // Теплофизика высоких температур. 2016.Т. 54. № 4. С. 553—562.
8. Benuzzi A., Magallon D. FARO-LWR Programme L-14 Test Quick-Look Report. Techn. Note № I.94.171. Institute for Energy and Transport, 1994.
9. Benuzzi A., Magallon D. FARO-LWR Programme L-19 Test Quick-Look Report. Tech. Note № I.96.27. Institute for Energy and Transport, 1996.
Published
2018-12-21
Section
Power engineering (05.14.00)