Optimizing the Fuel and Energy Balance of Metallurgical Enterprises by Using Combined-сycle Technologies
Abstract
The article discusses matters concerned with constructing a fuel and energy balance and using secondary energy resources at metallurgical enterprises. Methods for mathematically modeling the fuel and energy balance of metallurgical enterprises are analyzed. Integer and linear programming methods are analyzed and compared with nonlinear optimization methods. The purpose of the work is to develop a unified systematic approach to improving the power supply systems used at various types of metallurgical enterprises: small metallurgical plants, mini-electric steel-smelting plants, and large metallurgical plants based on combined cycle units operating on natural gas and combustible secondary energy resources, such as blast furnace, coke oven and converter gases. Based on the developed system approach, it is proposed to replace a 12 MW steam turbine with a 25 MW combined cycle unit operating on a mixture of blast furnace and natural gas, which makes it possible to save the fuel and energy resources at the metallurgical plant in an amount of 30.3 thousand tce a year. The power supply system of an electrometallurgical mini-complex with a capacity of 500 thousand tons of steel per year is analyzed. Based on the analysis results, a 40 MW combined cycle unit is proposed to fully cover the enterprise electrical and thermal loads. To optimize the fuel and energy balance of a large metallurgical plant, the OptiMet information and analytical system is used, into which the PGU-VGER (denoting a combined cycle unit operating on secondary energy resources) calculation module developed by the author is built in. The calculation results have shown that the construction of a 145 MW combined cycle unit at the combined heat and power plant of a metallurgical plant will make it possible reduce the consumption of fuel and energy resources by 350 thousand tce a year.
References
2. Сазанов Б.В. Использование вторичных энергоресурсов в металлургии. М.: Металлургиздат, 1953.
3. Гиммельфарб М.Л., Сазанов Б.В. Газовые балансы заводов черной металлургии. М.: Изд-во МЭИ, 1959.
4. Никифоров Г.В., Заславец Б.И. Энергосбережение на металлургических предприятиях. Магнитогорск: Изд-во МГТУ им. Носова, 2000.
5. Energy and Steel Industry: Rep. Intern. Washington: Iron and Steel Institute. 1982.
6. Rakhmonov I.U., Omonov F.B. Balance of Consumption of Energy Resources in the Steel Industry // European Sci. 2017. No. 4. Pp. 24—25.
7. Виленский Н.М., Лац В.М. Топливно-энергетический баланс металлургического завода. М.: Металлургия, 1970.
8. Спирин Н.А., Швыдкий В.С., Лобанов В.И., Лавров В.В. Введение в системный анализ теплофизических процессов металлургии. Екатеринбург: Изд-во Уральского гос. техн. ун-та, 1999.
9. Попырин Л.С. Математическое моделирование и оптимизация теплоэнергетических установок. М.: Энергия, 1978.
10. Демченко Н.Ф., Корнфельд В.Н., Шашкова М.Н., Полунина И. Использование экономико-математических моделей для оптимизации энерготехнологических комплексов металлургических комбинатов // Сталь. 1991. № 6. С. 87—91.
11. Zeng Y., Xiao X., Li J., Sun L., Floudas Ch.A., Li H. A Novel Multi-period Mixed-integer Linear Optimization Model for Optimal Distribution of Byproduct Gases, Steam and Power in an Iron and Steel Plant // Energy. 2017. V. 143. Pp. 881—899.
12. García S.G., Montequín V.R., Palacios H.M., Bayo A.M. A Mixed Integer Linear Programming Model for the Optimization of Steel Waste Gases in Cogeneration: a Combined Coke Oven and Converter Gas Case Study // Energies. 2020. V. 13(15). Pp. 3781—3806.
13. Liu K., Gao F. Coordination Optimisation of Energy and Manufacturing Flow for Industry Integrated Energy System // IET Generation, Transmission & Distribution. 2022. V. 16. Pp. 3719—3733.
14. Lee S.-Y., Lee G.-S., Moon S.I., Yoon1 Y.-T. Optimization of Iron and Steel Manufacturing Plant Considering Electricity Price Tariff and Electric Arc Furnace Control // IET Generation, Transmission & Distribution. 2023. V. 17. Pp. 5027—5040.
15. Sun W., Cai J., Ye Zh. Advances in Energy Conservation of China Steel Industry // Sci. World J. 2013. V. 2013(2). P. 247035.
16. Ma D., Chen W., Xu T. Quantify the Energy and Environmental Benefits of Implementing Energy-efficiency Measures in China’s Iron and Steel Production // Future Cities and Environment. 2015. V. 1(7). Pp. 1—13.
17. He K., Wang L., Li X. Review of the Energy Consumption and Production Structure of China’s Steel Industry: Current Situation and Future Development // Metals. 2020. V. 10(3). Pp. 302—321.
18. Kim Y.K., Lee E.-B. Optimization Simulation, Using Steel Plant Off-gas for Power Generation: a Life-cycle Cost Analysis Approach // Energies. 2018. V. 11. Pp. 2884—2901.
19. Bhaskar A., Assadi M., Somehsaraei H.N. Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen // Energies. 2020. V. 13. Pp. 758—781.
20. Wu X., Xi H., Ren Y., Lee K.Y. Power-carbon Coordinated Control of BFG-fired CCGT Power Plant Integrated with Solvent-based Post-combustion CO2 Capture // Energy. 2021. V. 226. P. 120435.
21. Бородулин А.В. и др. Математические модели оптимального использования ресурсов в доменном производстве. Свердловск: Изд-во УНЦ АН СССР, 1985.
22. Ситас В.И., Султангузин И.А, Шомов А.П., Ярунин С.Н., Яшин А.П. Программно-информационная система «ОптиМет» управления энергетическими и сырьевыми ресурсами металлургического комбината // Вестник МЭИ. 2003. № 5. С. 114—119.
23. Султангузин И.А. Научно-технические основы моделирования и оптимизации энерготехнологической системы металлургического комбината: дис. … доктора техн. наук. М.: Московский энергетический ин-т, 2005.
24. Султангузин И.А., Яворовский Ю.В. Математическое моделирование и оптимизация промышленных теплоэнергетических систем. М.: Изд-во МЭИ, 2009.
25. Султангузин И.А. и др. Применение информационно-аналитической системы «ОптиМет» для решения оптимизационных задач промышленной теплоэнергетики. М.: Изд-во МЭИ, 2013.
26. Сазанов Б.В., Ситас В.И. Промышленные теплоэнергетические установки и системы. М.: Издат. дом МЭИ, 2014.
27. Sultanguzin I.A. e. a. Using of Information-analytical System «OptiMet» for the Resource and Energy Saving Tasks in Engineering Educational Process // Proc. IV Intern. Conf. Information Technologies in Engineering Education. Moscow: NRU «MPEI», 2018. Pp. 1—4.
28. Паппас М., Моради Дж. Усовершенствованный алгоритм прямого поиска для задач математического программирования // Конструирование и технология проектирования. 1974. № 4. С. 158—165.
29. Яворовский Ю.В., Султангузин И.А., Ситас В.И., Яшин А.П. Повышение эффективности ТЭЦ-ПВС металлургического комбината при использовании парогазовых установок // Энергосбережение и водоподготовка. 2006. № 6. С. 51—53.
30. Яворовский Ю.В., Султангузин И.А., Ситас В.И., Галактионов В.В. Повышение эффективности энергоснабжения металлургического комбината за счет использования горючих газов в парогазовых установках // Металлургическая теплотехника: История, современное состояние, будущее. К столетию со дня рождения М.А. Глинкова. М.: МИСиС, 2006. С. 659—662.
31. Яворовский Ю.В. Повышение эффективности ТЭЦ–ПВС металлургического комбината при использовании парогазовых установок: авторефю дис. … канд. техн. наук. М.: Московский энергетический ин-т, 2007.
32. Energy Use in the Steel Industry. Brussel: Intern. Iron and Steel Institute, 1998.
33. Otsuka H., Tanabe H., Harada S., Tanaka S., Obata J., Xuewen Ch. Anshan Iron & Steel Group Corporation, China, Construction and Operation Experience of 300 MW Blast Furnace Gas Firing Combined Cycle Power Plant // Mitsubishi Heavy Industries. Techn. Rev. 2007. V. 44(4).
34. Best Available Techniques (BAT) Reference Document for Iron and Steel Production. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). Joint Research Centre Ref. Rep. 2013.
35. Chinese Steel Plant Orders two MHPS Blast Furnace Gas-fired Generating Units [Электрон. ресурс] https://www.world-energy.org/article/8443.html (дата обращения 06.05.2024).
36. Mitsubishi Power Receives Order for 180 MW Class BFG-fired GTCC Plant for Jiangsu Shagang Group, a Leading Steelmaker in China. Order Includes M701SDAX Gas Turbine as Key Component [Электрон. ресурс] https://power.mhi.com/news/20210625.html (дата обращения 06.05.2024).
37. Султангузин И.А., Шомов П.А., Егоров А.В., Евсеенко И.В., Яворовский Ю.В. Топливно-энергетический баланс электрометаллургического миникомплекса // Черные металлы. 2022. № 4. С. 50—56.
---
Для цитирования: Яворовский Ю.В. Оптимизация топливно-энергетического баланса металлургических предприятий на основе применения парогазовых технологий // Вестник МЭИ. 2024. № 6. С. 101—110. DOI: 10.24160/1993-6982-2024-6-101-110.
#
1. Goldobin M. Edinye Pokazateli Proizvodstva po Brutto-balansam. Stal'. 1940;11—12:78—85. (in Russian).
2. Sazanov B.V. Ispol'zovanie Vtorichnykh Energoresursov v Metallurgii. M.: Metallurgizdat, 1953. (in Russian).
3. Gimmel'farb M.L., Sazanov B.V. Gazovye Balansy Zavodov Chernoy Metallurgii. M.: Izd-vo MEI, 1959. (in Russian).
4. Nikiforov G.V., Zaslavets B.I. Energosberezhenie na Metallurgicheskikh Predpriyatiyakh. Magnitogorsk: Izd-vo MGTU im. Nosova, 2000. (in Russian).
5. Energy and Steel Industry: Rep. Intern. Washington: Iron and Steel Institute. 1982.
6. Rakhmonov I.U., Omonov F.B. Balance of Consumption of Energy Resources in the Steel Industry. European Sci. 2017;4:24—25.
7. Vilenskiy N.M., Lats V.M. Toplivno-energeticheskiy Balans Metallurgicheskogo Zavoda. M.: Metallurgiya, 1970. (in Russian).
8. Spirin N.A., Shvydkiy V.S., Lobanov V.I., Lavrov V.V. Vvedenie v Sistemnyy Analiz Teplofizicheskikh Protsessov Metallurgii. Ekaterinburg: Izd-vo Ural'skogo Gos. Tekhn. Un-ta, 1999. (in Russian).
9. Popyrin L.S. Matematicheskoe Modelirovanie i Optimizatsiya Teploenergeticheskikh Ustanovok. M.: Energiya, 1978. (in Russian).
10. Demchenko N.F., Kornfel'd V.N., Shashkova M.N., Polunina I. Ispol'zovanie Ekonomiko-matematicheskikh Modeley dlya Optimizatsii Energotekhnologicheskikh Kompleksov Metallurgicheskikh Kombinatov. Stal'. 1991;6:87—91. (in Russian).
11. Zeng Y., Xiao X., Li J., Sun L., Floudas Ch.A., Li H. A Novel Multi-period Mixed-integer Linear Optimization Model for Optimal Distribution of Byproduct Gases, Steam and Power in an Iron and Steel Plant. Energy. 2017;143:881—899.
12. García S.G., Montequín V.R., Palacios H.M., Bayo A.M. A Mixed Integer Linear Programming Model for the Optimization of Steel Waste Gases in Cogeneration: a Combined Coke Oven and Converter Gas Case Study. Energies. 2020;13(15):3781—3806.
13. Liu K., Gao F. Coordination Optimisation of Energy and Manufacturing Flow for Industry Integrated Energy System. IET Generation, Transmission & Distribution. 2022;16:3719—3733.
14. Lee S.-Y., Lee G.-S., Moon S.I., Yoon1 Y.-T. Optimization of Iron and Steel Manufacturing Plant Considering Electricity Price Tariff and Electric Arc Furnace Control. IET Generation, Transmission & Distribution. 2023;17:5027—5040.
15. Sun W., Cai J., Ye Zh. Advances in Energy Conservation of China Steel Industry. Sci. World J. 2013;2013(2):247035.
16. Ma D., Chen W., Xu T. Quantify the Energy and Environmental Benefits of Implementing Energy-efficiency Measures in China’s Iron and Steel Production. Future Cities and Environment. 2015;1(7):1—13.
17. He K., Wang L., Li X. Review of the Energy Consumption and Production Structure of China’s Steel Industry: Current Situation and Future Development. Metals. 2020;10(3):302—321.
18. Kim Y.K., Lee E.-B. Optimization Simulation, Using Steel Plant Off-gas for Power Generation: a Life-cycle Cost Analysis Approach. Energies. 2018;11:2884—2901.
19. Bhaskar A., Assadi M., Somehsaraei H.N. Decarbonization of the Iron and Steel Industry with Direct Reduction of Iron Ore with Green Hydrogen. Energies. 2020;13:758—781.
20. Wu X., Xi H., Ren Y., Lee K.Y. Power-carbon Coordinated Control of BFG-fired CCGT Power Plant Integrated with Solvent-based Post-combustion CO2 Capture. Energy. 2021;226:120435.
21. Borodulin A.V. i dr. Matematicheskie Modeli Optimal'nogo Ispol'zovaniya Resursov v Domennom Proizvodstve. Sverdlovsk: Izd-vo UNTS AN SSSR, 1985. (in Russian).
22. Sitas V.I., Sultanguzin I.A, Shomov A.P., Yarunin S.N., Yashin A.P. Programmno-informatsionnaya Sistema «OptiMet» Upravleniya Energeticheskimi i Syr'evymi Resursami Metallurgicheskogo Kombinata. Vestnik MEI. 2003;5:114—119. (in Russian).
23. Sultanguzin I.A. Nauchno-tekhnicheskie Osnovy Modelirovaniya i Optimizatsii Energotekhnologicheskoy Sistemy Metallurgicheskogo Kombinata: Dis. … Doktora Tekhn. Nauk. M.: Moskovskiy Energeticheskiy In-t, 2005. (in Russian).
24. Sultanguzin I.A., Yavorovskiy Yu.V. Matematicheskoe Modelirovanie i Optimizatsiya Promyshlennykh Teploenergeticheskikh Sistem. M.: Izd-vo MEI, 2009. (in Russian).
25. Sultanguzin I.A. i dr. Primenenie Informatsionno-analiticheskoy Sistemy «OptiMet» dlya Resheniya Optimizatsionnykh Zadach Promyshlennoy Teploenergetiki. M.: Izd-vo MEI, 2013. (in Russian).
26. Sazanov B.V., Sitas V.I. Promyshlennye Teploenergeticheskie Ustanovki i Sistemy. M.: Izdat. Dom MEI, 2014. (in Russian).
27. Sultanguzin I.A. e. a. Using of Information-analytical System «OptiMet» for the Resource and Energy Saving Tasks in Engineering Educational Process. Proc. IV Intern. Conf. Information Technologies in Engineering Education. Moscow: NRU «MPEI», 2018:1—4.
28. Pappas M., Moradi Dzh. Usovershenstvovannyy Algoritm Pryamogo Poiska dlya Zadach Matematicheskogo Programmirovaniya. Konstruirovanie i Tekhnologiya Proektirovaniya. 1974;4:158—165. (in Russian).
29. Yavorovskiy Yu.V., Sultanguzin I.A., Sitas V.I., Yashin A.P. Povyshenie Effektivnosti TETS-PVS Metallurgicheskogo Kombinata pri Ispol'zovanii Parogazovykh Ustanovok. Energosberezhenie i Vodopodgotovka. 2006;6:51—53. (in Russian).
30. Yavorovskiy Yu.V., Sultanguzin I.A., Sitas V.I., Galaktionov V.V. Povyshenie Effektivnosti Energosnabzheniya Metallurgicheskogo Kombinata za Schet Ispol'zovaniya Goryuchikh Gazov v Parogazovykh Ustanovkakh. Metallurgicheskaya Teplotekhnika: Istoriya, Sovremennoe Sostoyanie, Budushchee. K Stoletiyu so Dnya Rozhdeniya M.A. Glinkova. M.: MISiS, 2006:659—662. (in Russian).
31. Yavorovskiy Yu.V. Povyshenie Effektivnosti TETS–PVS Metallurgicheskogo Kombinata pri Ispol'zovanii Parogazovykh Ustanovok: Avtorefyu Dis. … Kand. Tekhn. Nauk. M.: Moskovskiy Energeticheskiy In-t, 2007. (in Russian).
32. Energy Use in the Steel Industry. Brussel: Intern. Iron and Steel Institute, 1998.
33. Otsuka H., Tanabe H., Harada S., Tanaka S., Obata J., Xuewen Ch. Anshan Iron & Steel Group Corporation, China, Construction and Operation Experience of 300 MW Blast Furnace Gas Firing Combined Cycle Power Plant. Mitsubishi Heavy Industries. Techn. Rev. 2007;44(4).
34. Best Available Techniques (BAT) Reference Document for Iron and Steel Production. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). Joint Research Centre Ref. Rep. 2013.
35. Chinese Steel Plant Orders two MHPS Blast Furnace Gas-fired Generating Units [Elektron. Resurs] https://www.world-energy.org/article/8443.html (Data Obrashcheniya 06.05.2024).
36. Mitsubishi Power Receives Order for 180 MW Class BFG-fired GTCC Plant for Jiangsu Shagang Group, a Leading Steelmaker in China. Order Includes M701SDAX Gas Turbine as Key Component [Elektron. Resurs] https://power.mhi.com/news/20210625.html (Data Obrashcheniya 06.05.2024).
37. Sultanguzin I.A., SHomov P.A., Egorov A.V., Evseenko I.V., Yavorovskiy Yu.V. Toplivno-energeticheskiy Balans Elektrometallurgicheskogo Minikompleksa. Chernye Metally. 2022;4:50—56. (in Russian)
---
For citation: Yavorovsky Yu.V. Optimizing the Fuel and Energy Balance of Metallurgical Enterprises by Using Combined-сycle Technologies. 2024;6:101—110. (in Russian). DOI: 10.24160/1993-6982-2024-6-101-110.