Improving the Energy Efficiency of Cryogenic Pump Units: a Comparative Analysis of Induction and Synchronous Reluctance Motors for Liquefied Natural Gas Transportation
Abstract
The article presents a comprehensive analysis and calculation of the characteristics of a synchronous reluctance motor (SRM) and an induction motor (IM) used for driving submerged pumps in liquefied natural gas (LNG) transportation systems. The structural and thermal aspects of motor operation under cryogenic conditions are considered, including heat release, temperature distribution, motor design metal intensity, and their influence on process losses. Calculations performed using the finite element method (FEM) in the Motor-CAD software system have shown that SRMs are more advantageous than IMs in cryogenic applications. The SRM demonstrates higher efficiency, which results in lower process losses due to decreased heat release.
The study results have shown that by using SRMs, it is possible to achieve significantly lower evaporation of the medium transferred, a longer LNG no-drain storage time, and lower operating costs at storage and transportation facilities. Directions for future research have been proposed to improve the SRM characteristics and adapt them to varying load and temperature operating conditions.
References
2. Mokhatab S., Mak J.Y., Valappil J.V., David A. Handbook of Liquefied Natural Gas. N.-Y.: Elsevier, 2014.
3. Shaton K., Hervik A., Hjelle H.M. The Environmental Footprint of Natural Gas Transportation: LNG vs. Pipeline // Economics of Energy & Environmental Policy. 2020. V. 9(1). Pp. 223—242.
4. Родькин Я.Э., Зайцев А.В., Сулин А.Б. Пути снижения потерь СПГ при транспортировке и хранении // Вестник международной академии холода. 2023. № 4. С. 44—50.
5. Bezdenezhnykh I., Smirnov V., Denisenko V. Advantages of Synchronous Reluctance Motors and Synchronous Motors with Permanent Magnets as Drive of Liquid Natural Gas Submerged Pumps for Process Loss Reduction // Proc. Belarusian-Ural-Siberian Smart Energy Conf. Ekaterinburg, 2023. Pp. 28—32.
6. Mathes K.N. Dielectric Properties of Cryogenic Liquids // IEEE Trans. Electrical Insulation. 1967. V. EI-2. No. 1. Pp. 24—32.
7. Hossam-Eldin A.A. Prospects and Behaviour of Liquid Natural Gas in Cryoequipments // Physica B + C. 1983. V. 119(3). Pp. 279—282.
8. Rush S.D., Lonn H. Tutorial on Cryogenic Submerged Electric Motor Pumps // Proc. Intern. Pump Users Symp. Houston, 2001. Pp. 101—107.
9. Dlugiewicz L. e. a. Electrical Motor for Liquid Gas Pump // Proc. Intern. Symp. Power Electron., Elect. Drives, Autom. Motion. Taormina, 2006. Pp. 311—316.
10. Безденежных И.Н., Денисенко В.И., Смирнов В.М. Влияние тепловыделения асинхронного электродвигателя криогенного погружного насоса на технологические потери объектов производства, хранения и транспортировки сжиженного природного газа // Электротехника, электротехнологии, электротехнические материалы и компоненты: Труды XX Междунар. конф. Поведники, 2024. С. 113—120.
11. Ozcelik N.G., Dogru U.E., Imeryuz M., Ergene L.T. Synchronous Reluctance Motor vs. Induction Motor at Low-power Industrial Applications: Design and Comparison // Energies. 2019. V. 12(11). P. 2190.
12. Кононенко Е.В. Синхронные реактивные машины. М.: Энергия, 1979.
13. Постников И.М., Ралле В.В., Синхронные реактивные машины. Киев: Техника, 1970.
14. Прахт В.А., Дмитриевский В.А., Казакбаев М.В. Синхронный реактивный двигатель без магнитов класса энергоэффективности IE5 // Электротехника. 2019. № 6. С. 40—46.
15. Guo C., Feng Y., Huang S., Wang J. Operational Performance Analysis of the Cryogenic Electrical Machine for Submerged Liquefied Natural Gas Pumps // Frontiers Energy Res. 2022. V. 10. P. 922888.
16. Ferrari S., Pellegrino G. FEAfix: FEA Refinement of Design Equations for Synchronous Reluctance Machines // IEEE Trans. Industry Appl. 2020. V. 56(1). Pp. 256—266.
---
Для цитирования: Безденежных И.Н., Денисенко В.И., Панарин А.Н. Повышение энергоэффективности криогенных насосных агрегатов: сравнительный анализ асинхронного и синхронного реактивного двигателей для транспортировки сжиженного природного газа // Вестник МЭИ. 2025. № 3. С. 24—31. DOI: 10.24160/1993-6982-2025-3-24-31
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Kravchenko M.P. Geopolitika Prirodnogo Gaza. Vestnik Moskovskogo Gos. Lingvisticheskogo Un-ta. Seriya «Obshchestvennye Nauki». 2015;2(713):69—77. (in Russian).
2. Mokhatab S., Mak J.Y., Valappil J.V., David A. Handbook of Liquefied Natural Gas. N.-Y.: Elsevier, 2014.
3. Shaton K., Hervik A., Hjelle H.M. The Environmental Footprint of Natural Gas Transportation: LNG vs. Pipeline. Economics of Energy & Environmental Policy. 2020;9(1):223—242.
4. Rod'kin Ya.E., Zaytsev A.V., Sulin A.B. Puti Snizheniya Poter' SPG pri Transportirovke i Khranenii. Vestnik Mezhdunarodnoy Akademii Kholoda. 2023;4:44—50. (in Russian).
5. Bezdenezhnykh I., Smirnov V., Denisenko V. Advantages of Synchronous Reluc-tance Motors and Synchronous Motors with Permanent Magnets as Drive of Liquid Natural Gas Submerged Pumps for Process Loss Reduction. Proc. Belarusian-Ural-Siberian Smart Energy Conf. Ekaterinburg, 2023:28—32.
6. Mathes K.N. Dielectric Properties of Cryogenic Liquids. IEEE Trans. Electrical In-sulation. 1967;EI-2;1:24—32.
7. Hossam-Eldin A.A. Prospects and Behaviour of Liquid Natural Gas in Cryo-equipments. Physica B + C. 1983;119(3):279—282.
8. Rush S.D., Lonn H. Tutorial on Cryogenic Submerged Electric Motor Pumps. Proc. Intern. Pump Users Symp. Houston, 2001:101—107.
9. Dlugiewicz L. e. a. Electrical Motor for Liquid Gas Pump. Proc. Intern. Symp. Pow-er Electron., Elect. Drives, Autom. Motion. Taormina, 2006:311—316.
10. Bezdenezhnykh I.N., Denisenko V.I., Smirnov V.M. Vliyanie Teplovydeleniya Asinkhronnogo Elektrodvigatelya Kriogennogo Pogruzhnogo Nasosa na Tekhnologicheskie Poteri Obektov Proizvodstva, Khraneniya i Transportirovki Szhizhennogo Prirodnogo Gaza. Elektrotekhnika, Elektrotekhnologii, Elektrotekhnicheskie Materialy i Komponenty: Trudy XX Mezhdunar. Konf. Povedniki, 2024:113—120. (in Russian).
11. Ozcelik N.G., Dogru U.E., Imeryuz M., Ergene L.T. Synchronous Reluctance Motor vs. Induction Motor at Low-power Industrial Applications: Design and Comparison. Energies. 2019;12(11):2190.
12. Kononenko E.V. Sinkhronnye Reaktivnye Mashiny. M.: Energiya, 1979. (in Russian).
13. Postnikov I.M., Ralle V.V. Sinkhronnye Reaktivnye Mashiny. Kiev: Tekhnika, 1970. (in Russian).
14. Prakht V.A., Dmitrievskiy V.A., Kazakbaev M.V. Sinkhronnyy Reaktivnyy Dvigatel' bez Magnitov Klassa Energoeffektivnosti IE5. Elektrotekhnika. 2019;6:40—46. (in Russian).
15. Guo C., Feng Y., Huang S., Wang J. Operational Performance Analysis of the Cryogenic Electrical Machine for Submerged Liquefied Natural Gas Pumps. Frontiers Energy Res. 2022;10:922888.
16. Ferrari S., Pellegrino G. FEAfix: FEA Refinement of Design Equations for Synchronous Reluctance Machines. IEEE Trans. Industry Appl. 2020;56(1):256—266
---
For citation: Bezdeneshnykh I.N., Denisenko V.I., Panarin A.N. Improving the Energy Efficiency of Cryogenic Pump Units: a Comparative Analysis of Induction and Synchronous Reluctance Motors for Liquefied Natural Gas Transportation. Bulletin of MPEI. 2025;3:24—31. (in Russian). DOI: 10.24160/1993-6982-2025-3-24-31
---
Conflict of interests: the authors declare no conflict of interest