Non-isothermal Mass Transfer during Piston Flow Pattern of Nanofluid with Adhesion of Nanoparticles in the Flat Channel Initial Thermal Section

  • Александр [Aleksandr] Викторович [V.] Ряжских [Ryazhskih]
Keywords: mass transfer, initial section, nanoparticle deposition kinetics, ideal displacement

Abstract

The article proposes, within the framework of the Euler-Euler approach, a model of non-isothermal mass transfer for the motion of nanofluid in a flat channel with nanoparticles depositing on the "wetted" walls according to the adhesive mechanism (i.e., with the maximum nanoparticle absorption rate by the deposition surface) in the initial thermal region. It is shown that in this case, migration and thermophoresis of nanoparticles can be neglected, leaving only Brownian diffusion for the dispersed phase transfer. By linearizing the synthesized mass transfer subproblem carried out using the averaged axial temperature in each channel cross section, it became possible to obtain an approximate analytical solution for the temperature and concentration fields under boundary conditions of the first kind. Computational experiments on a model without linearization, have confirmed the correctness of the obtained solution. Model calculations have demonstrated the effect an elevated temperature of moving nanofluid has on the nanoparticle adhesion rate to the channel walls. Data on the deposition of nanoparticles and the availability of its maximum local thicknesses have been obtained.

Information about author

Александр [Aleksandr] Викторович [V.] Ряжских [Ryazhskih]

Ph.D. (Phys.-Math.), Assistant Professor of Applied Mathematics and Mechanics Dept., Voronezh State Technical University, e-mail: ryazhskihav@bk.ru

References

1. Awais M. e. a. Heat Transfer and Pressure Drop Performance of Nanofluid: a State-of-the-art Review // Int. J.Thermofluids. 2021. V. 9. P. 100065.
2. Wen D., Ding Y. Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions // Int. J. Heat and Mass Transfer. 2004. V. 47. Pp. 5181—5188.
3. Naqiuddin N.H. e. a. Overview of Micro-channel Design for High Flux Application // Renewable and Sustainable Energy Rev. 2018. V. 82. Pp. 901—914.
4. Lee J., Mudawar I. Assessment of the Effectiveness of Nanofluid for Single-phase and Two-phase heat Transfer in Microchannels // Int. J. Heat and Mass Transfer. 2004. V. 50. Pp. 452—463.
5. Schumer R., Bensen D.A., Meerschaert M.M., Bancmer B. Fractal Mobile/immobile Salute Transport // Water Resour. Res. 2003. V. 39. Pp. 1296—1309.
6. Bahiraci M. Particle Migration in Nanofluids: a Critical Review // Int. J. of Thermal Sci. 2016. V. 109. Pp. 90—113.
7. Condarzi S., Shekaramiz M., Omidvar A., Golab E., Karimipour A. Nanoparticles Migration due to Thermopharesis and Brownian Motion and Its Imact on Ag-MgO/water Hybrid Nanofluid Natural Convection // Power Technol. 2020. V. 375. Pp. 493—503.
8. Wang M., Dobson P.S., Paul M.C. Numerical Investigation of Nanofluid Deposition in a Microchannel Cooling System // Powder Technol. 2023. V. 425. P. 118582.
9. Kwak D.B., Kim S.C., Lee H., Pui D.Y. Numerical Investigation of Nanoparticles Deposition Location and Pattern on a Sharp-bent Tube Wall // Int. J. Heat Mass Transfer. 2021. V. 164. P. 120534.
10. Bao F., Hao H., Yin Z., Tu C. Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces // Micromachines. 2021. V. 12(1). P. 47.
11. Hinds W.C. Aerosol Technology: Properties, Behavior and Measurement of Aiborne Particles. N.-Y.: Willey&Sonc, 1999.
12. Buongirno J. Convective Transport in Nanofluids // Trans. ASME. 2006. V. 128. Pp. 240—250.
13. Krieger I.M. Rheology of Monodisperse Lattices // Adv. in Colloid and Interface Sci. 1972. V. 3. Pp. 111—132.
14. Кэйс В.М. Конвективный тепло- и массообмен. М.: Энергия, 1972.
15. Meyer J.P., Evetrs M. Single-phase Mixed Convection of Developing and Fully Developed Flow in Smooth Horizontal Circular Tubes in the Laminar and Transitional Flow Regimes // Int. J. Heat Mass Transf. 2018. V. 117. Pp. 1251—1273.
16. Eastmann J.A., Choi S.U.S., Yu W., Thompson L.J. Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Nanofluids Containing Nanoparticles // Appl. Phys. Lett. 2001. V. 78(6). Pp. 718—720.
17. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. VI. Гидродинамика. М.: Физматлит, 2001.
18. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967.
19. Harris F.E. Mathematics for Physical Science and Engineering. N.-Y.: Academic Press, 2014.
20. Xuan Y., Roetzel W. Conceptions for Heat Transfer Correlation of Nanofluid // Int. J. Heat Mass Transf. 2020. V. 43(19). Pp. 3701—3707.
21. Williams W., Buongiorno J., Hu L.-W. Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes // J. Heat Transfer. 2008. V. 130(4). P. 042415.
---
Для цитирования: Ряжских А.В. Неизотермический массообмен при поршневом движении наножидкости с адгезией наночастиц на начальном термическом участке плоского канала // Вестник МЭИ. 2025. № 4. С. 104—111. DOI: 10.24160/1993-6982-2025-4-104-111
#
1. Awais M. e. a. Heat Transfer and Pressure Drop Performance of Nanofluid: a State-of-the-art Review. Int. J.Thermofluids. 2021;9:100065.
2. Wen D., Ding Y. Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions. Int. J. Heat and Mass Transfer. 2004;47:5181—5188.
3. Naqiuddin N.H. e. a. Overview of Micro-channel Design for High Flux Application. Renewable and Sustainable Energy Rev. 2018;82:901—914.
4. Lee J., Mudawar I. Assessment of the Effectiveness of Nanofluid for Single-phase and Two-phase Heat Transfer in Microchannels. Int. J. Heat and Mass Transfer. 2004;50:452—463.
5. Schumer R., Bensen D.A., Meerschaert M.M., Bancmer B. Fractal Mobile/immobile Salute Transport. Water Resour. Res. 2003;39:1296—1309.
6. Bahiraci M. Particle Migration in Nanofluids: a Critical Review. Int. J. of Thermal Sci. 2016;109:90—113.
7. Condarzi S., Shekaramiz M., Omidvar A., Golab E., Karimipour A. Nanoparticles Migration due to Thermopharesis and Brownian Motion and Its Imact on Ag-MgO/water Hybrid Nanofluid Natural Convection. Power Technol. 2020;375:493—503.
8. Wang M., Dobson P.S., Paul M.C. Numerical Investigation of Nanofluid Deposition in a Microchannel Cooling System. Powder Technol. 2023;425:118582.
9. Kwak D.B., Kim S.C., Lee H., Pui D.Y. Numerical Investigation of Nanoparticles Deposition Location and Pattern on a Sharp-bent Tube Wall. Int. J. Heat Mass Transfer. 2021;164:120534.
10. Bao F., Hao H., Yin Z., Tu C. Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces. Micromachines. 2021;12(1):47.
11. Hinds W.C. Aerosol Technology: Properties, Behavior and Measurement of Aiborne Particles. N.-Y.: Willey&Sonc, 1999.
12. Buongirno J. Convective Transport in Nanofluids. Trans. ASME. 2006;128:240—250.
13. Krieger I.M. Rheology of Monodisperse Lattices. Adv. in Colloid and Interface Sci. 1972;3:111—132.
14. Keys V.M. Konvektivnyy Teplo- i Massoobmen. M.: Energiya, 1972. (in Russian).
15. Meyer J.P., Evetrs M. Single-phase Mixed Convection of Developing and Fully Developed Flow in Smooth Horizontal Circular Tubes in the Laminar and Transitional Flow Regimes. Int. J. Heat Mass Transf. 2018;117:1251—1273.
16. Eastmann J.A., Choi S.U.S., Yu W., Thompson L.J. Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Nanofluids Containing Nanoparticles. Appl. Phys. Lett. 2001;78(6):718—720.
17. Landau L.D., Lifshits E.M. Teoreticheskaya Fizika. T. VI. Gidrodinamika. M.: Fizmatlit, 2001. (in Russian).
18. Lykov A.V. Teoriya Teploprovodnosti. M.: Vysshaya Shkola, 1967. (in Russian).
19. Harris F.E. Mathematics for Physical Science and Engineering. N.-Y.: Academic Press, 2014.
20. Xuan Y., Roetzel W. Conceptions for Heat Transfer Correlation of Nanofluid. Int. J. Heat Mass Transf. 2020;43(19):3701—3707.
21. Williams W., Buongiorno J., Hu L.-W. Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes. J. Heat Transfer. 2008;130(4):042415
---
For citation: Ryazhskikh A.V. Non-isothermal Mass Transfer during Piston Flow Pattern of Nanofluid with Adhesion of Nanoparticles in the Flat Channel Initial Thermal Section. Bulletin of MPEI. 2025;4:104—111. (in Russian). DOI: 10.24160/1993-6982-2025-4-104-111
Published
2025-06-24
Section
Theoretical and Applied Heat Engineering (Technical Sciences) (2.4.6)