A Review of Photovoltaic System Power Output Forecasting Methods

  • Сяоюй [Xiaoyu] Чэнь [Chen]
  • Ян [Yang] Ду [Du]
  • Хашим Али [Hashim Ali] Альмнхалави [Almnhalawi]
  • Владимир [Vladimir] Иванович [I.] Велькин [Velkin]
  • Цюаньпэн [Quanpeng] Ли [Li]
Keywords: photovoltaic system, power forecasting, forecast time scales, forecast spatial scales, input parameters

Abstract

An integrated temporal and spatial analysis of photovoltaic (PV) system power output forecasting methods plays a key role in ensuring stable power system operation and efficient consumption of renewable energy. The article considers existing studies of PV power forecasting methods from the perspective of different temporal and spatial scales. The forecasting methods have been classified according to the forecasting process, temporal and spatial scales. Based on the temporal and spatial scales of PV power generation, the forecasting methods are put in a systematic order at different temporal scales (ultra-short-term, short-term, and medium- to long-term) and spatial scales (for a single plant and for a region) along with their application scenarios, and technical challenges are discussed. Future development lines are proposed, such as development of simplified models, joint forecasting at different scales, and hybrid methods combining physical modeling and data analysis. The article provides a theoretical framework for selecting and optimizing PV power forecasting methods, aids smart grid management and large-scale application of renewable energy sources, and lays the foundation for further research on state-of-the-art forecasting methods.

Information about authors

Сяоюй [Xiaoyu] Чэнь [Chen]

Ph.D.-student of Nuclear Power Plants and Renewable Energy Sources Dept., Ural Federal University named after the First President of Russia B. N. Yeltsin, ORCID: 0000-0001-8417-9463, e-mail: schen@urfu.ru

Ян [Yang] Ду [Du]

Ph.D.-student of Nuclear Power Plants and Renewable Energy Sources Dept., Ural Federal University named after the First President of Russia B. N. Yeltsin, ORCID: 0000-0001-6563-2621, e-mail: erica002@163.com

Хашим Али [Hashim Ali] Альмнхалави [Almnhalawi]

Ph.D.-student of Nuclear Power Plants and Renewable Energy Sources Dept., Ural Federal University named after the First President of Russia B. N. Yeltsin, ORCID: 0009-0009-3623-761X, e-mail: hashimali785@gmail.com

Владимир [Vladimir] Иванович [I.] Велькин [Velkin]

Dr. Sci. (Techn.), Professor of Nuclear Power Plants and Renewable Energy Sources Dept., Ural Federal University named after the First President of Russia B. N. Yeltsin, ORCID: 0000-0002-4435-4009, e-mail: v.i.velkin@urfu.ru

Цюаньпэн [Quanpeng] Ли [Li]

Ph.D.-student of Building Structures and Soil Mechanics Dept., Ural Federal University named after the First President of Russia B. N. Yeltsin, ORCID: 0009-0002-5863-4236, e-mail: 1061011290@qq.com

References

1. Kuo W.-C., Chen C.-H., Hua S.-H., Wang C.-C. Assessment of Different Deep Learning Methods of Power Generation Forecasting for Solar PV System // Appl. Sci. 2022. V. 12(15). P. 7529.
2. Cui H., Li B.I. Research on Photovoltaic Power Forecasting Model Based on Hybrid Neural Network // Power System Protection and Control. 2021. V. 49(13). Pp. 142—149.
3. Wang. H. e. a. Global Sensitivity Analysis for Islanded Microgrid Based on Sparse Polynomial Chaos Expansion // Automation of Electric Power Systems. 2019. V. 43(10). Pp. 44—57.
4. Liu Q. e. a. Deep Learning Photovoltaic Power Generation Model Based on Time Series // Power System Protection and Control. 2021. V. 49(19). Pp. 87—98.
5. Ji X. e. a. Short-term Photovoltaic Power Forecasting Based on MIE-LSTM // Power System Protection and Control. 2020. V. 48(7). Pp. 50—57.
6. Bozorg M. e. a. Bayesian Bootstrap Quantile Regression for Probabilistic Photovoltaic Power Forecasting // Protection and Control of Modern Power Systems. 2020. V. 5. P. 21.
7. Jakoplić A., Franković D., Havelka J., Bulat H. Short-term Photovoltaic Power Plant Output Forecasting Using Sky Images and Deep Learning // Energies. 2023. V. 16(14). P. 5428.
8. Stüber M. e. a. Forecast Quality of Physics-based and Data-driven PV Performance Models for a Small-scale PV System // Frontiers Energy Research. 2021. V. 9. P. 639346.
9. Duman Altan A., Diken B., Kayisoglu B. Prediction of Photovoltaic Panel Power Outputs Using Time Series and Artificial Neural Network Methods // J. Tekirdag Agricultural Faculty. 2021. V. 18. Pp. 457—469.
10. Farah S., Boland J. Time Series Model For Real-time Forecasting of Australian Photovoltaic Solar Farms Power Output // J. Renewable and Sustainable Energy. 2021. V. 13(4). P. 046102.
11. Saint-Drenan Y-M. e. a. Bayesian Parameterisation of a Regional Photovoltaic Model — Application to Forecasting // Solar Energy. 2019. V. 188. Pp. 760—774.
12. Jogunuri S. e. a. Random Forest Machine Learning Algorithm Based Seasonal Multi-step Ahead Short-term Solar Photovoltaic Power Output Forecasting // IET Renewable Power Generation. 2024. V. 19(1). Pp. 1—16.
13. Venugopal V., Sun Y., Brandt A.R. Short-term Solar PV Forecasting Using Computer Vision: The Search for Optimal CNN Architectures for Incorporating Sky Images and PV Generation History // J. Renewable and Sustainable Energy. 2019. V. 11(6). P. 066102.
14. Wai R-J., Lai P-X. Design of Intelligent Solar PV Power Generation Forecasting Mechanism Combined with Weather Information under Lack of Real-Time Power Generation Data // Energies. 2022. V. 15(10). P. 3838.
15. Almaghrabi S., Rana M., Hamilton M., Rahaman M.S. Spatially Aggregated Photovoltaic Power Prediction Using Wavelet and Convolutional Neural Networks // Proc. Intern. Joint Conf. Neural Networks (IJCNN). Shenzhen, 2021. Pp. 1—8.
16. Wang Y., Wang X., Chen W., Yan K. Short-term Photovoltaic Output Forecasting Method Using LSTM Neural Network Considering Spatial Correlation // J. Automation Power System. 2020. V. 32. Pp. 78—85.
17. Зацаринная Ю.Н. и др. Прогнозирование выработки электроэнергии от ВИЭ методами машинного обучения // Известия высших учебных заведений. Серия «Проблемы энергетики». 2023. № 25(3). С. 81—92.
18. Wang S. e. a. A New Hybrid Short-term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM // Energies. 2020. V. 13(1). P. 87.
19. Құттыбай Н.Б., Айтбекова Ш.Б., Қошқарбай Н.Ж., Болатбек А.Б., Жоламанов Б.Н. Прогнозирование выходной мощности фотоэлектрической системына основе нейронных сетей // Информационно-коммуникационные и химические технологии. 2024. № 1(22). С. 84—96.
20. Chen Z.B. e. a. Photovoltaic Power Ultra Short-term Prediction Model Based on Ground Cloud Image and Radial Basis Function Artificial Neural Network // Proc. Chinese Soc. Electrical and Electronics Eng. Conf. 2015. V. 35. Pp. 561—567.
21. Ozoegwu C.G. Artificial Neural Network Forecast of Monthly Mean Daily Global Solar Radiation of Selected Locations Based on Time Series and Month Number // J. Cleaner Production. 2019. V. 216. Pp. 1—13.
22. Heo J., Jung J., Kim B., Han S. Digital Elevation Model-based Convolutional Neural Network Modeling for Searching of High Solar Energy Regions // Appl. Energy. 2020. V. 262. P. 114588.
23. Aslam M., Lee J-M., Kim H-S., Lee S-J., Hong S. Deep Learning Models for Long-term Solar Radiation Forecasting Considering Microgrid Installation: a Comparative Study // Energies. 2020. V. 13(1). P. 147.
24. Jung Y., Jung J., Kim B., Han S. Long Short-term Memory Recurrent Neural Network for Modeling Temporal Patterns in Long-term Power Forecasting for Solar PV Facilities: Case Study of South Korea // J. Cleaner Production. 2020. V. 250. P. 119476.
25. Salamanis A.I. e. a. Benchmark Comparison of Analytical, Data-based and Hybrid Models for Multi-step Short-term Photovoltaic Power Generation Forecasting // Energies. 2020. V. 13. P. 5978.
26. Cordeiro-Costas M., Villanueva D., Eguía-Oller P., Granada-Álvarez E. Machine Learning and Deep Learning Models Applied to Photovoltaic Production Forecasting // Appl. Sci. 2022. V. 12. P. 8769.
27. Моргоева А.Д., Моргоев И.Д., Клюев Р.В., Кочковская С.С. Прогнозирование почасовой выработки электроэнергии солнечной электростанцией с помощью алгоритмов машинного обучения // Известия Томского политехн. ун-та. Серия «Инжиниринг георесурсов». 2023. № 334(12). С. 7—19.
28. Kumari P., Toshniwal D. Long Short Term Memory-сonvolutional Neural Network Based Deep Hybrid Approach for Solar Irradiance Forecasting // Appl. Energy. 2021. V. 295. P. 117061.
29. Basaran K., Çelikten A., Bulut H. A Short-term Photovoltaic Output Power Forecasting Based on Ensemble Algorithms Using Hyperparameter Optimization // Electrical Eng. 2024. V. 106. Pp. 5319—5337.
30. Hu K. e. a. Short-term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer // Sustainability. 2024. V. 16(14). P. 5940.
31. Wang W., Wang B., Zhang J., Lu L., He X. New Energy Regional Power Prediction Algorithm Based on Statistical Upscaling in Ningbo Area // J. China Electric Power. 2020. V. 53(5). Pp. 100—111.
32. Eom H., Son Y., Choi S. Feature-selective Ensemble Learning-based Long-term Regional PV Generation Forecasting // IEEE Access. 2020. V. 8. Pp. 54620—54630.
33. Jiao L. e. a. Spatial Clustering Method for Large-scale Distributed User Photovoltaics Based on Spatial Correlation // J. Automation Power System. 2019. V. 43. Pp. 97—102.
34. Goh S.M. e. a. Hardware Implementation of an Active Learning Self-organizing Neural Network to Predict the Power Fluctuation Events of a Photovoltaic Grid-tied System // Microprocessors and Microsystems. 2022. V. 90. P. 104448
---
Для цитирования: Чэнь Сяоюй, Ду Ян, Альмнхалави Хашим Али, Велькин В.И., Ли Цюаньпэн. Обзор методов прогнозирования мощности фотоэлектрических систем // Вестник МЭИ. 2025. № 5. С. 41—50. DOI: 10.24160/1993-6982-2025-5-41-50
---
Конфликт интересов: авторы заявляют об отсутствии конфликта интересов
#
1. Kuo W.-C., Chen C.-H., Hua S.-H., Wang C.-C. Assessment of Different Deep Learning Methods of Power Generation Forecasting for Solar PV System. Appl. Sci. 2022;12(15):7529.
2. Cui H., Li B.I. Research on Photovoltaic Power Forecasting Model Based on Hybrid Neural Network. Power System Protection and Control. 2021;49(13):142—149.
3. Wang. H. e. a. Global Sensitivity Analysis for Islanded Microgrid Based on Sparse Polynomial Chaos Expansion. Automation of Electric Power Systems. 2019;43(10):44—57.
4. Liu Q. e. a. Deep Learning Photovoltaic Power Generation Model Based on Time Series. Power System Protection and Control. 2021;49(19):87—98.
5. Ji X. e. a. Short-term Photovoltaic Power Forecasting Based on MIE-LSTM. Power System Protection and Control. 2020;48(7):50—57.
6. Bozorg M. e. a. Bayesian Bootstrap Quantile Regression for Probabilistic Photovoltaic Power Forecasting. Protection and Control of Modern Power Systems. 2020;5:21.
7. Jakoplić A., Franković D., Havelka J., Bulat H. Short-term Photovoltaic Power Plant Output Forecasting Using Sky Images and Deep Learning. Energies. 2023;16(14):5428.
8. Stüber M. e. a. Forecast Quality of Physics-based and Data-driven PV Performance Models for a Small-scale PV System. Frontiers Energy Research. 2021;9:639346.
9. Duman Altan A., Diken B., Kayisoglu B. Prediction of Photovoltaic Panel Power Outputs Using Time Series and Artificial Neural Network Methods. J. Tekirdag Agricultural Faculty. 2021;18:457—469.
10. Farah S., Boland J. Time Series Model For Real-time Forecasting of Australian Photovoltaic Solar Farms Power Output. J. Renewable and Sustainable Energy. 2021;13(4):046102.
11. Saint-Drenan Y-M. e. a. Bayesian Parameterisation of a Regional Photovoltaic Model — Application to Forecasting. Solar Energy. 2019;188:760—774.
12. Jogunuri S. e. a. Random Forest Machine Learning Algorithm Based Seasonal Multi-step Ahead Short-term Solar Photovoltaic Power Output Forecasting. IET Renewable Power Generation. 2024;19(1):1—16.
13. Venugopal V., Sun Y., Brandt A.R. Short-term Solar PV Forecasting Using Computer Vision: The Search for Optimal CNN Architectures for Incorporating Sky Images and PV Generation History. J. Renewable and Sustainable Energy. 2019;11(6):066102.
14. Wai R-J., Lai P-X. Design of Intelligent Solar PV Power Generation Forecasting Mechanism Combined with Weather Information under Lack of Real-Time Power Generation Data. Energies. 2022;15(10):3838.
15. Almaghrabi S., Rana M., Hamilton M., Rahaman M.S. Spatially Aggregated Photovoltaic Power Prediction Using Wavelet and Convolutional Neural Networks. Proc. Intern. Joint Conf. Neural Networks (IJCNN). Shenzhen, 2021:1—8.
16. Wang Y., Wang X., Chen W., Yan K. Short-term Photovoltaic Output Forecasting Method Using LSTM Neural Network Considering Spatial Correlation. J. Automation Power System. 2020;32:78—85.
17. Zacarinnaya Yu.N. i dr. Prognozirovanie Vyrabotki Elektroenergii ot VIE Metodami Mashinnogo Obucheniya. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya «Problemy Energetiki». 2023;25(3):S. 81—92. (in Russian).
18. Wang S. e. a. A New Hybrid Short-term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM. Energies. 2020;13(1):87.
19. Құttybay N.B., Aytbekova Sh.B., Қoshқarbay N.Zh., Bolatbek A.B., Zholamanov B.N. Prognozirovanie Vykhodnoy Moshchnosti Fotoelektricheskoy Sistemyna Osnove Neyronnykh Setey. Informacionno-kommunikacionnye I Khimicheskie Tekhnologii. 2024;1(22):84—96. (in Russian).
20. Chen Z.B. e. a. Photovoltaic Power Ultra Short-term Prediction Model Based on Ground Cloud Image and Radial Basis Function Artificial Neural Network. Proc. Chinese Soc. Electrical and Electronics Eng. Conf. 2015;35:561—567.
21. Ozoegwu C.G. Artificial Neural Network Forecast of Monthly Mean Daily Global Solar Radiation of Selected Locations Based on Time Series and Month Number. J. Cleaner Production. 2019;216:1—13.
22. Heo J., Jung J., Kim B., Han S. Digital Elevation Model-based Convolutional Neural Network Modeling for Searching of High Solar Energy Regions. Appl. Energy. 2020;262:114588.
23. Aslam M., Lee J-M., Kim H-S., Lee S-J., Hong S. Deep Learning Models for Long-term Solar Radiation Forecasting Considering Microgrid Installation: a Comparative Study. Energies. 2020;13(1):147.
24. Jung Y., Jung J., Kim B., Han S. Long Short-term Memory Recurrent Neural Network for Modeling Temporal Patterns in Long-term Power Forecasting for Solar PV Facilities: Case Study of South Korea. J. Cleaner Production. 2020;250:119476.
25. Salamanis A.I. e. a. Benchmark Comparison of Analytical, Data-based and Hybrid Models for Multi-step Short-term Photovoltaic Power Generation Forecasting. Energies. 2020;13:5978.
26. Cordeiro-Costas M., Villanueva D., Eguía-Oller P., Granada-Álvarez E. Machine Learning and Deep Learning Models Applied to Photovoltaic Production Forecasting. Appl. Sci. 2022;12:8769.
27. Morgoeva A.D., Morgoev I.D., Klyuev R.V., Kochkovskaya S.S. Prognozirovanie Pochasovoy Vyrabotki Elektroenergii Solnechnoy Elektrostanciey s Pomoshch'yu Algoritmov Mashinnogo Obucheniya. Izvestiya Tomskogo Politekhn. Un-ta. Seriya «Inzhiniring Georesursov». 2023;334(12):7—19. (in Russian).
28. Kumari P., Toshniwal D. Long Short Term Memory-сonvolutional Neural Network Based Deep Hybrid Approach for Solar Irradiance Forecasting. Appl. Energy. 2021;295:117061.
29. Basaran K., Çelikten A., Bulut H. A Short-term Photovoltaic Output Power Forecasting Based on Ensemble Algorithms Using Hyperparameter Optimization. Electrical Eng. 2024;106:5319—5337.
30. Hu K. e. a. Short-term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer. Sustainability. 2024;16(14):5940.
31. Wang W., Wang B., Zhang J., Lu L., He X. New Energy Regional Power Prediction Algorithm Based on Statistical Upscaling in Ningbo Area. J. China Electric Power. 2020;53(5):100—111.
32. Eom H., Son Y., Choi S. Feature-selective Ensemble Learning-based Long-term Regional PV Generation Forecasting. IEEE Access. 2020;8:54620—54630.
33. Jiao L. e. a. Spatial Clustering Method for Large-scale Distributed User Photovoltaics Based on Spatial Correlation. J. Automation Power System. 2019;43:97—102.
34. Goh S.M. e. a. Hardware Implementation of an Active Learning Self-organizing Neural Network to Predict the Power Fluctuation Events of a Photovoltaic Grid-tied System. Microprocessors and Microsystems. 2022;90:104448
---
For citation: Chen Xiaoyu, Du Yang, Almnhalawi Hashim Ali, Velkin V.I., Li Quanpeng. A Review of Photovoltaic System Power Output Forecasting Methods. Bulletin of MPEI. 2025;5:41—50. (in Russian). DOI: 10.24160/1993-6982-2025-5-41-50
---
Conflict of interests: the authors declare no conflict of interest
Published
2025-06-24
Section
Energy Systems and Complexes (2.4.5)