Compensating for Nonisochronism in an Oscillator with Nonlinear Damping Resistance

  • Павел [Pavel] Андреевич [A.] Стремоухов [Stremoukhov]
  • Ансар [Ansar] Ризаевич [R.] Сафин [Safin]
  • Алексей [Aleksey] Борисович [B.] Устинов [Ustinov]
  • Николай [Nikolay] Николаевич [N.] Удалов [Udalov]
Keywords: onisochronism, theory of oscillations, oscillating system, resonance curve

Abstract

In recent years, the theory and engineering of very high-frequency (VHF) radio-transmitting devices, as well as different devices of photonics, magnonics and plazmonics have underwent noticeable changes in connection with very rapid miniaturization and advent of new electronic components. Various VHF devices made on the basis of thin magnetic films in which magnetostatic spin waves propagate are examples of such novelties. Nonetheless, a number of fundamental physical problems still remain to be solved in the field of VHF electronics. The problem of controlling the frequency of excited oscillations by means of special mechanisms is an extremely topical issue. Nonisochronism as property of an oscillating system to change its natural frequency as a function of the external disturbance amplitude is the basic oscillation frequency control mechanism inherent in many non-linear resonators. Despite the possibility to control the frequency, which is an undoubtedly positive feature, nonisochronism also has an essential shortcoming, namely, multistability, which gives rise to saltuses between stationary oscillating modes. Therefore, the problem of compensating and controlling nonisochronism is important for nonlinear filters and self-oscillators of different physical nature. The possibility of limiting nonisochronism in an oscillating system with nonlinear damping resistance under the effect of a periodic external disturbance is investigated. Despite a wide interest in nonlinear oscillating systems, such task was not considered earlier in the theory of oscillations and its applications.

Information about authors

Павел [Pavel] Андреевич [A.] Стремоухов [Stremoukhov]

Workplace Formation and Processing of Radio Signals Dept., NRU MPEI

Occupation student

Ансар [Ansar] Ризаевич [R.] Сафин [Safin]

Science degree: Ph.D. (Techn.)

Workplace Formation and Processing of Radio Signals Dept., NRU MPEI

Occupation Assistant Professor

Алексей [Aleksey] Борисович [B.] Устинов [Ustinov]

Science degree: Dr. Sci. (Phys.-Math.)

Workplace Physical Electronics аnd Technology Dept., Saint Petersburg Electrotechnical University «LETI»

Occupation Assistant Professor

Николай [Nikolay] Николаевич [N.] Удалов [Udalov]

Science degree: Dr.Sci. (Techn.)

Workplace: Formation and Processing of Radio Signals Dept., NRU MPEI

Occupation: Professor

References

1. Городецкий М.Л. Оптические микрорезонаторы с гигантской добротностью. М.: Физматлит, 2011.

2. Калиникос Б.А., Устинов А.Б., Баруздин С.А. Спин-волновые устройства и эхо-процессоры. М.: Радиотехника, 2013.

3. Никитов С.А. и др. Магноника — новое направление спинтроники и спин-волновой электроники // УФН. 2015. Т. 185. No 10. С. 1099—1128.

4. Сафин А.Р., Устинов А.Б. Исследование колебаний намагниченности в ферромагнитных пленках в условиях нелинейного сдвига частоты и нелинейного затухания // Фундаментальные исследования. 2014. Т. 3. No 126. С. 509—513.

5. Кулешов В.Н., Перфильев А.А. Динамика нелинейных резонансных узлов устройств формирования сигналов. М.: Изд. дом МЭИ, 2007.

6. Капранов М.В., Кулешов В.Н., Уткин Г.М. Теория колебаний в радиотехнике. М.: Наука, 1984.

7. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. М.: Физматлит, 2005.
---
Для цитирования: Стремоухов П.А., Сафин А.Р., Устинов А.Б., Удалов Н.Н. Компенсация неизохронности в резонаторе с нелинейным сопротивлением потерь // Вестник МЭИ. 2017. № 3. С. 87—91. DOI: 10.24160/1993-6982-2017-3-87-91.
#
1. Gorodetskiy M.L. Opticheskie Mikrorezonatory s Gigantskoy Dobrotnost'yu. M.: Fizmatlit, 2011. (in Russian).

2. Kalinikos B.A., Ustinov A.B., Baruzdin S.A. Spin- volnovye Ustroystva i Ekho-protsessory. M.: Radiotekhnika, 2013. (in Russian).

3. Nikitov S.A. i dr. Magnonika — novoe Napravlenie Spintroniki i Spin-volnovoy Elektroniki. UFN. 2015;185; 10:1099—1128. (in Russian).

4. Safin A.R., Ustinov A.B. Issledovanie kolebaniy Namagnichennosti v Ferromagnitnykh Plenkakh v Uslovi- yakh Nelineynogo Sdviga Chastoty i Nelineynogo Zatukhaniya. Fundamental'nye Issledovaniya. 2014;3;126:509—513. (in Russian).

5. Kuleshov V.N., Perfil'ev A.A. Dinamika Nelineynykh Rezonansnykh Uzlov Ustroystv Formirovaniya Signalov. M.: Izd. Dom MPEI, 2007. (in Russian).

6. Kapranov M.V., Kuleshov V.N., Utkin G.M.Teoriya Kolebaniy v Radiotekhnike. M.: Nauka, 1984. (in Russian).

7. Kuznetsov A.P., Kuznetsov S.P., Ryskin N.M. Nelineynye Kolebaniya. M.: Fizmatlit, 2005. (in Russian).
---
For citation: Stremoukhov P.A., Safin A.R., Ustinov A.B., Udalov N.N. Compensating for Nonisochronism in an Oscillator with Nonlinear Damping Resistance. MPEI Vestnik. 2017; 3:87—91. (in Russian). DOI: 10.24160/1993-6982-2017-3-87-91.
Published
2019-01-15
Section
Radio Engineering and Communications (05.12.00)