Simulating Energy-Saving Industry-Grade Installations Involving Thermochemical Heat Recovery

  • Андрей [Andrey] Борисович [B.] Гаряев [Garyaev]
  • Василий [Vasiliy] Степанович [S.] Глазов [Glazov]
  • Сергей [Sergey] Викторович [V.] Жубрин [Zhubrin]
  • Станислав [Stanislav] Константинович [K. ] Попов [Popov]
Keywords: high-temperature thermal process installations, thermochemical heat recovery, software system, mathematical model, gas- turbine unit

Abstract

The article explains importance of elaborating scientific and technical solutions aimed at creating energy-saving and environmentally friendly technologies based on thermochemical recovery (TCR) of the heat of natural gas combustion products. To address this challenge, the authors propose to use the SCAN (Steam Conversion Analyzer) software package, a computation system based on the results from numerical investigation of the processes that occur during thermochemical heat recovery and intended for providing the necessary information support to specialists in charge for developing process flow diagrams involving the use of TCR. A characteristic feature of the above-mentioned software system is that it combines mathematical models intended for calculating process flow diagrams (represented by lumped-parameter or system models) and models for calculating hydrodynamic and heat-and-mass transfer processes accompanied by chemical reactions in the apparatuses included in the composition of process flow diagrams (represented by distributed-parameter or detailed models). The SCAN package allows the user to select packages and subroutines that make it possible to minimize the computation time and resources required to perform the computation. In addition, the system includes features for tracking how the values of sought characteristics depend on the degree of detail (accuracy) of the model describing the process under study. The SCAN software system includes a library module containing the process flow diagrams of installations and individual apparatuses within their composition. Each example is supplemented with recommendations for modeling and arranging the processes, which were obtained as a result of numerical calculations. Two examples of using the SCAN software system for elaborating circuit solutions and simulating the processes involving TCR are given. The first example is devoted to the scheme for analyzing the TCR of the heat of gas turbine exhaust gases, and the second one is devoted to modeling the processes according to an algorithm combining system and detailed calculations. It is pointed out that the SCAN software system offers the possibility to study the effect the design features of apparatuses (including the design of reaction elements that make up the conversion reactor) and the process operating parameters have on the conversion completeness degree. It also allows the user to evaluate the saving of fuel in a production process or in generating electricity.

Information about authors

Андрей [Andrey] Борисович [B.] Гаряев [Garyaev]

Science degree: Dr.Sci. (Techn.)

Workplace Heat-and-Mass Transfer Processes and Installations Dept., NRU MPEI

Occupation Head of department

Василий [Vasiliy] Степанович [S.] Глазов [Glazov]

Science degree: Ph.D. (Techn.)

Workplace Heat-and-Mass Transfer Processes and Installations Dept., NRU MPEI

Occupation Assistant Professor, Leading Researcher

Сергей [Sergey] Викторович [V.] Жубрин [Zhubrin]

Science degree: Ph.D. (Techn.)

Workplace Kingston University, London

Occupation Professor

Станислав [Stanislav] Константинович [K. ] Попов [Popov]

Science degree: Dr.Sci. (Techn.)

Workplace Energetic of High-Temperature Technologies Dept., NRU MPEI

Occupation Professor

References

1. Новосельцев В.Н. К вопросу о химической регенерации теплоты промышленных огнетехнических установок: Автореф. дисc. ... канд. техн. наук. М.: МЭИ, 1971.

2. Шопшин М.Ф. Исследование реактора-теплообменника паровой конверсии природного газа в системе регенеративного теплоиспользования топливных печей: Автореф. дисс. ... канд. техн. наук. М.: МЭИ, 1979.

3. Beerkens R., Muysendberg Н. Comparative Study on Energy-Saving Technologies for Glass Furnaces // Glastech. Ber. 1992. V. 65. No. 8. Pp. 216—224.

4. Носач В.Г. Энергия топлива. Киев: Наукова думка, 1989.

5. Шопшин М.Ф. и др. Химическая регенерация тепловых отходов топливных печей. Сер. «Энерготехнологические процессы в химической промышленности». М.: НИИТЭХИМ, 1981.

6. Kesser K.F. et al. Analysis of a Basic Chemically Recuperated Gas Turbine Power Plant // ASME Journal Eng. for Gas Turbines and Power. 1994. V. 116. P. 277.

7. Wen-Ching Yang at al. Thermal Chemical Recupe-Rarion Method and System for Use with Gas Turbine System // U.S. Patent. 1997. No. 5. P. 896.

8. Westinhouse Electric Corporation. Advansed Natural Gas-Fired Turbine System Utilizing Thermochemical Recuperation and/or Partial Oxidation for Electricity Generation, Greenfield and Repowering Applications. Final Report. Orlando: Florida, 1997.

9. Крылов А.Н. Повышение эффективности стекловаренных печей на основе комплексной регенерации тепловых отходов: Автореф. дисс. ... канд. техн. наук. М.: МЭИ, 2007.

10. Ткач М.Р., Чередниченко А.К. Эффективность газотурбинной установки с термодинамической и термохимической регенерацией теплоты уходящих газов // Авиационно-космическая техника и технология. 2009. No 7 (64). C. 19—22.

11. Пащенко Д.И. Повышение энергетической эффективности высокотемпературных теплотехнологических установок за счет термохимической регенерации теплоты: Автореф. дисс. ... канд. техн. наук. Саратов: СГТУ, 2011.

12. Рестрепо Г.А. и др. Повышение энергоэффективности системы термохимической рекуперации на основе численного моделирования тепломассообменных процессов в ее элементах // Тепловые процессы в технике. 2012. No 4. С. 165—171.

13. Zhubrin S.V. Сomputational Model for Performance Predictions in Bayonet-Tube Metnane-Steam Reformer [Электрон. ресурс] https://docs.google.com/document/d/129Z9z7yLiQcg BpSv7IgKXxL2dxO0hisw F5ShkWp3anM/preview?pli=1 (дата обращения 04.06.2017)

14. Ву Ван Чьен. Использование труб Фильда в аппаратах системы комплексной утилизации тепловых отходов высокотемпературных установок: Автореф. дисс. .... канд. техн. наук. М.: НИУ «МЭИ», 2012.

15. Жубрин С.В. и др. Модель тепло- и массо-обмена в камере дожигания с трубами Фильда // Надежность и безопасность энергетики. 2014. No 3 (26). С. 57—65.

16. Тарарыков А.В., Гаряев А.Б. Исследование неравновесного характера протекания паровой конверсии метана в процессе термохимической регенерации // Вестник МЭИ. 2015. No 2. С. 62—66.

17. Zhubrin S.V., Glazov V.S. Detailed Lumped Model of Bayonet-Tube Methane Steam Reformer [Электрон. ресурс] http://www.researchgate.net/publication/280599860 (дата обращения 07.05.2017)

18. Zhubrin S.V., Glazov V.S. Some Models Predicting ThermoChemical Performance in Tubular Methane Steam Reformers [Электрон. ресурс] http://www.researchgate.net/publication/280610351 (дата обращения 12.06.2017)

19.Попов С.К. Анализ предельного уровня энергосбережения в установках с термохимической регенерацией теплоты // Вестник МЭИ. 2012. No 5. С. 9—13.

20. Попов С.К., Свистунов И.Н., Гавряшина И.В. Эффективность применения термохимической регенерации тепловых отходов в промышленных печах // Энергосбережение – теория и практика: Труды VI Междунар. школы-семинара молодых ученых и специалистов. М.: Издательский дом МЭИ, 2012.

21. Попов С.К., Свистунов И.Н. Исследование установок с термохимической регенерацией теплоты на основе пароуглекислотной конверсии // Промышленная энергетика. 2013. No 8. С. 28—31.

22. Попов С.К., Свистунов И.Н., Конопелько Е.Д. Анализ эффективности термохимической регенерации в высокотемпературных установках // Энергосбережение и водоподготовка. 2014. No 3. С. 52—56.

23. Попов С.К. Методика оценки эффективности применения термохимической регенерации тепловых отходов // Промышленная энергетика. 2014. No 8. С. 36—40
---
Для цитирования: Гаряев А.Б., Глазов В.С., Жубрин С.В., Попов С.К. Моделирование энергосберегающих промышленных установок с термохимической регенерацией // Вестник МЭИ. 2017. № 4. С. 15—22. DOI: 10.24160/1993-6982-2017-4-15-22.
#
1. Novosel'tsev V.N. K Voprosu o Himicheskoy Regeneratsii Tepla Promyshlennyh Ognetekhnicheskih Ustanovok: Avtoref. Dis. ... Kand. Tekhn. Nauk. M.: MPEI, 1971. (in Russian).

2. Shopshin M.F. Issledovanie Reaktora-Teploobmennika Parovoy Konversii Prirodnogo Gaza v Sisteme Regenerativnogo Teploispol'zovaniya Toplivnyh Pechey: Avtoref. Dis. ... Kand. Tekhn. Nauk. M.: MPEI, 1979. (in Russian).

3. Beerkens R., Muysendberg N. Comparative Study on Energy-Saving Technologies for Glass Furnaces. Glastech. Ber. 1992;65;8:216—224.

4. Nosach V.G. Energiya Topliva. Kiev: Naukova Dumka, 1989. (in Russian).

5.Shopshin M.F. i dr.Himicheskaya Regeneratsiya Teplovyh Othodov Toplivnyh Pechey. Seriya Energotekhnologicheskie Protsessy v Himicheskoy Promyshlennosti. M.: NIITEKHIM, 1981. (in Russian).

6. Kesser K.F. et al. Analysis of a Basic Chemically Recuperated Gas Turbine Power Plant. ASME Journal Eng. for Gas Turbines and Power. 1994;116:277.

7. Wen-Ching Yang at al. Thermal Chemical Recupe-Rarion Method and System for Use with Gas Turbine System. U.S. Patent. 1997;5:896.

8. Westinhouse Electric Corporation. Advansed Natural Gas-Fired Turbine System Utilizing Thermochemical Recuperation and/or Partial Oxidation for Electricity Generation, Greenfield and Repowering Applications. final report. Orlando: Florida, 1997.

9. Krylov A.N. Povyshenie Effektivnosti Steklovarennyh Pechey na Osnove Kompleksnoy Regeneratsii Teplovyh Othodov: Avtoref. Dis. ... Kand. Tekhn. Nauk. M.: MPEI, 2007. (in Russian).

10. Tkach M.R., Cherednichenko A.K. Effektivnost' Gazoturbinnoy Ustanovki s Termodinamicheskoy i Termohimicheskoy Regeneratsiey Tepla Uhodyashchih Gazov. Aviatsionno-kosmicheskaya Tekhnika i Tekhnologiya. 2009;7(64):19—22. (in Russian).

11. Pashchenko D.I. Povyshenie Energetiches-koy Effektivnosti Vysokotemperaturnyh Teplotekhnologicheskih Ustanovok za Schet Termohimicheskoy Regeneratsii Teploty: Avtoref. Dis. ... Kand. Tekhn. Nauk. Saratov: SGTU, 2011. (in Russian).

12.Restrepo G.A. i dr.Povyshenie Energoeffektivnosti Sistemy Termohimicheskoy Rekuperatsii na Osnove Chislennogo Modelirovaniya Teplomassoobmennyh Protsessov v ee Elementah. Teplovye Protsessy vTekhnike. 2012;4:165—171. (in Russian).

13. Zhubrin S.V. Somputational Model for Perfor-mance Predictions in Bayonet-Tube Metnane-Steam Reformer. [Elektron. Resurs] https://docs.google.com/document/d/129 Z9z7yLiQcgBpSv7IgKXxL2dxO0hiswF5ShkWp3anM/pre view?pli=1 (Data Obrashcheniya 04.06.2017)

14. Vu Van Ch'en Ispol'zovanie Trub Fil'da v Apparatah Sistemy Kompleksnoy Utilizatsii Teplovyh Othodov Vysokotemperaturnyh Ustavnovok: Avtoref. Dis. .... Kand. Tekhn. Nauk. M.: NRU «MPEI», 2012. (in Russian).

15. Zhubrin S.V. i dr. Model' Teplo- i Massoobmena v Kamere Dozhiganiya s Trubami Fil'da. Nadezhnost' i Bezopasnost' Energetiki. 2014; 3 (26):57—65. (in Russian).

16. Tararykov A.V., Garyaev A.B. Issledovanie Neravnovesnogo Haraktera Protekaniya Parovoy Konversii Metana v Protsesse Termohimicheskoy Regeneratsii. MPEI Vestnik. 2015;2:62—66. (in Russian).

17. Zhubrin S.V., Glazov V.S. Detailed Lumped Model of Bayonet-Tube Methane Steam Reformer. [Elektron. Resurs] http://www.researchgate.net/publication/280599860 (Data Obrashcheniya 07.05.2017)

18. Zhubrin S.V., Glazov V.S. Some Models Predicting ThermoChemical Performance in Tubular Methane Steam Reformers [Elektron. Resurs] http://www.researchgate.net/publication/280610351 (Data Obrashcheniya 12.06.2017)

19. Popov S.K. Analiz Predel'nogo Urovnya Energosberezheniya v Ustanovkah s Termohimicheskoy Regeneratsiey Teploty. MPEI Vestnik. 2012;5:9—13. (in Russian).

20. Popov S.K., Svistunov I.N., Gavryashina I.V. Effektivnost' Primeneniya Termohimicheskoy Regeneratsii Teplovyh Othodov v Promyshlennyh Pechah. Energosberezhenie – Teoriya i Praktika: Trudy VI Mezhdunar. Shkoly-seminara Molodyh Uchenyh i Spetsialistov. M.: Izdatel'skiy dom MPEI, 2012. (in Russian).

21. Popov S.K., Svistunov I.N. Issledovanie Ustanovok s Termohimicheskoy Regeneratsiey Teploty na Osnove Parouglekislotnoy Konversii. Promyshlennaya Energetika. 2013;8:28—31. (in Russian).

22. Popov S.K., Svistunov I.N., Konopel'ko E.D. Analiz Effektivnosti Termohimicheskoy Regeneratsii v Vysokotemperaturnyh Ustanovkah. Energosberezhenie i Vodopodgotovka. 2014;3:52—56. (in Russian).

23. Popov S.K. Metodika Otsenki Effektivnosti Primeneniya Termohimicheskoy Regeneratsii Teplovyh Othodov. Promyshlennaya Energetika. 2014;8:36—40. (in Russian).
---
For citation: Garyaev A.B., Glazov V.S., Zhubrin S.V., Popov S.K. Simulating Energy-Saving Industry-Grade Installations Involving Thermochemical Heat Recovery. MPEI Vestnik. 2017; 4: 15—22. (in Russian). DOI: 10.24160/1993-6982-2017-4-15-22.
#
1. Novosel'tsev V.N. K Voprosu o Himicheskoy Regeneratsii Tepla Promyshlennyh Ognetekhnicheskih Ustanovok: Avtoref. Dis. ... Kand. Tekhn. Nauk. M.: MPEI, 1971. (in Russian).

2. Shopshin M.F. Issledovanie Reaktora-Teploobmennika Parovoy Konversii Prirodnogo Gaza v Sisteme Regenerativnogo Teploispol'zovaniya Toplivnyh Pechey: Avtoref. Dis. ... Kand. Tekhn. Nauk. M.: MPEI, 1979. (in Russian).

3. Beerkens R., Muysendberg N. Comparative Study on Energy-Saving Technologies for Glass Furnaces. Glastech. Ber. 1992;65;8:216—224.

4. Nosach V.G. Energiya Topliva. Kiev: Naukova Dumka, 1989. (in Russian).

5.Shopshin M.F. i dr.Himicheskaya Regeneratsiya Teplovyh Othodov Toplivnyh Pechey. Seriya Energotekhnologicheskie Protsessy v Himicheskoy Promyshlennosti. M.: NIITEKHIM, 1981. (in Russian).

6. Kesser K.F. et al. Analysis of a Basic Chemically Recuperated Gas Turbine Power Plant. ASME Journal Eng. for Gas Turbines and Power. 1994;116:277.

7. Wen-Ching Yang at al. Thermal Chemical Recupe-Rarion Method and System for Use with Gas Turbine System. U.S. Patent. 1997;5:896.

8. Westinhouse Electric Corporation. Advansed Natural Gas-Fired Turbine System Utilizing Thermochemical Recuperation and/or Partial Oxidation for Electricity Generation, Greenfield and Repowering Applications. final report. Orlando: Florida, 1997.

9. Krylov A.N. Povyshenie Effektivnosti Steklovarennyh Pechey na Osnove Kompleksnoy Regeneratsii Teplovyh Othodov: Avtoref. Dis. ... Kand. Tekhn. Nauk. M.: MPEI, 2007. (in Russian).

10. Tkach M.R., Cherednichenko A.K. Effektivnost' Gazoturbinnoy Ustanovki s Termodinamicheskoy i Termohimicheskoy Regeneratsiey Tepla Uhodyashchih Gazov. Aviatsionno-kosmicheskaya Tekhnika i Tekhnologiya. 2009;7(64):19—22. (in Russian).

11. Pashchenko D.I. Povyshenie Energetiches-koy Effektivnosti Vysokotemperaturnyh Teplotekhnologicheskih Ustanovok za Schet Termohimicheskoy Regeneratsii Teploty: Avtoref. Dis. ... Kand. Tekhn. Nauk. Saratov: SGTU, 2011. (in Russian).

12.Restrepo G.A. i dr.Povyshenie Energoeffektivnosti Sistemy Termohimicheskoy Rekuperatsii na Osnove Chislennogo Modelirovaniya Teplomassoobmennyh Protsessov v ee Elementah. Teplovye Protsessy vTekhnike. 2012;4:165—171. (in Russian).

13. Zhubrin S.V. Somputational Model for Perfor-mance Predictions in Bayonet-Tube Metnane-Steam Reformer. [Elektron. Resurs] https://docs.google.com/document/d/129 Z9z7yLiQcgBpSv7IgKXxL2dxO0hiswF5ShkWp3anM/pre view?pli=1 (Data Obrashcheniya 04.06.2017)

14. Vu Van Ch'en Ispol'zovanie Trub Fil'da v Apparatah Sistemy Kompleksnoy Utilizatsii Teplovyh Othodov Vysokotemperaturnyh Ustavnovok: Avtoref. Dis. .... Kand. Tekhn. Nauk. M.: NRU «MPEI», 2012. (in Russian).

15. Zhubrin S.V. i dr. Model' Teplo- i Massoobmena v Kamere Dozhiganiya s Trubami Fil'da. Nadezhnost' i Bezopasnost' Energetiki. 2014; 3 (26):57—65. (in Russian).

16. Tararykov A.V., Garyaev A.B. Issledovanie Neravnovesnogo Haraktera Protekaniya Parovoy Konversii Metana v Protsesse Termohimicheskoy Regeneratsii. MPEI Vestnik. 2015;2:62—66. (in Russian).

17. Zhubrin S.V., Glazov V.S. Detailed Lumped Model of Bayonet-Tube Methane Steam Reformer. [Elektron. Resurs] http://www.researchgate.net/publication/280599860 (Data Obrashcheniya 07.05.2017)

18. Zhubrin S.V., Glazov V.S. Some Models Predicting ThermoChemical Performance in Tubular Methane Steam Reformers [Elektron. Resurs] http://www.researchgate.net/publication/280610351 (Data Obrashcheniya 12.06.2017)

19. Popov S.K. Analiz Predel'nogo Urovnya Energosberezheniya v Ustanovkah s Termohimicheskoy Regeneratsiey Teploty. MPEI Vestnik. 2012;5:9—13. (in Russian).

20. Popov S.K., Svistunov I.N., Gavryashina I.V. Effektivnost' Primeneniya Termohimicheskoy Regeneratsii Teplovyh Othodov v Promyshlennyh Pechah. Energosberezhenie – Teoriya i Praktika: Trudy VI Mezhdunar. Shkoly-seminara Molodyh Uchenyh i Spetsialistov. M.: Izdatel'skiy dom MPEI, 2012. (in Russian).

21. Popov S.K., Svistunov I.N. Issledovanie Ustanovok s Termohimicheskoy Regeneratsiey Teploty na Osnove Parouglekislotnoy Konversii. Promyshlennaya Energetika. 2013;8:28—31. (in Russian).

22. Popov S.K., Svistunov I.N., Konopel'ko E.D. Analiz Effektivnosti Termohimicheskoy Regeneratsii v Vysokotemperaturnyh Ustanovkah. Energosberezhenie i Vodopodgotovka. 2014;3:52—56. (in Russian).

23. Popov S.K. Metodika Otsenki Effektivnosti Primeneniya Termohimicheskoy Regeneratsii Teplovyh Othodov. Promyshlennaya Energetika. 2014;8:36—40. (in Russian).
---
For citation: Garyaev A.B., Glazov V.S., Zhubrin S.V., Popov S.K. Simulating Energy-Saving Industry-Grade Installations Involving Thermochemical Heat Recovery. MPEI Vestnik. 2017; 4: 15—22. (in Russian). DOI: 10.24160/1993-6982-2017-4-15-22.
Published
2019-01-16
Section
Power engineering (05.14.00)