Simulating the Frequency Converter Inverter’s Self-Learning Control System for Suppressing Higher Harmonic Components

  • Василий [Vasiliy] Игоревич [I.] Кульманов [Kul’manov]
  • Алексей [Aleksey] Сергеевич [S.] Анучин [Anuchin]
  • Дмитрий [Dmitriy] Михайлович [M.] Шпак [Shpak]
  • Юрий [Yuri] Олегович [O.] Беляков [Belyakov]
  • Вадим [Vadim] Николаевич [N.] Остриров [Ostrirov]
Keywords: harmonic distortion, frequency converters, self-learning control systems, power filters

Abstract

Simulation of a three-phase frequency converter based on three single-phase full-bridge voltage inverters with a sine-wave output filter is considered. A new self-learning control system for the converter’s inverters is proposed. The previously developed inverter control system uses the discrete Fourier transform (DFT) to suppress the output voltage higher harmonic components. Individual regulators are used to control each harmonic component (including the fundamental and higher-order ones). The DFT algorithm produces signals proportional to the amplitudes of the fundamental and a number of higher-order harmonic components, which are applied to the regulators as feedbacks. The main drawback of the existing system is that it poses rather high demand to the microcontroller computation capacities. The newly proposed system is based on the self-learning principle and uses a periodic integrator (a P-integrator) as the output voltage regulator. The P-integrator is represented in discrete form by an array of discrete integrators, each of which operates only in the 1/64 part of the fundamental harmonic component cycle. The new control system's software code is much smaller in size and contains a fewer number of “slow” arithmetic operations, due to which it is easier to implement and less demanding with respect to computation resources. The control system analysis results demonstrate its good performance in terms of suppressing higher harmonic components: the output voltage total harmonic distortion factor does not exceed 5% for the cases of operation on linear and nonlinear loads. The article describes the modernized control system structure and its implementation in MATLAB Simulink software package. Advantages of the self-learning algorithm as compared with the algorithm based on the discrete Fourier transform are demonstrated. The simulation results confirm the applicability of the new control method. The algorithm is implemented in the C language in the MATLAB S-function block and is suitable for being implemented in real-time control systems based on dedicated microcontrollers without the need of significantly modifying the software code.

Information about authors

Василий [Vasiliy] Игоревич [I.] Кульманов [Kul’manov]

Workplace Electric Drives Dept., NRU MPEI

Occupation Ph.D.-student

Алексей [Aleksey] Сергеевич [S.] Анучин [Anuchin]

Science degree: Ph.D. (Techn.)

Workplace Automated Electrical Drive Dept., NRU MPEI

Occupation Head of Dept.

Дмитрий [Dmitriy] Михайлович [M.] Шпак [Shpak]

Workplace Electric Drives Dept., NRU MPEI

Occupation Ph.D.-student

Юрий [Yuri] Олегович [O.] Беляков [Belyakov]

Workplace Electric Drives Dept., NRU MPEI

Occupation Ph.D.-student

Вадим [Vadim] Николаевич [N.] Остриров [Ostrirov]

Science degree: Dr.Sci. (Techn.)

Workplace Automated Electrical Drive Dept., NRU MPEI

Occupation Professor

References

1. Грузков С.А. и др. Электрооборудование летательных аппаратов. Т. 1. Системы электроснабжения летательных аппаратов. М.: Изд-во МЭИ, 2005.

2. Anuchin A.S., Kulmanov V.I., Belyakov Y.O. Simulation of Power Converter Control System with Compensation of Harmonic Distortion in Output Voltage Waveform // SIBCON-2015. Omsk. 2015. Рp. 83—89.

3. ГОСТ Р 54073—2010. Системы электроснабжения самолетов и вертолетов. Общие требования и нормы ка- чества электроэнергии.

4. Никольский А.А. Точные самообучающиеся элек- троприводы станков некруглого точения. М.: Адвансед Солюшнз, 2016.

5. Sufen Chen, Y. M. Lai, Siew-Chong Tan, Chi K. Tse. Optimal Design of Repetitive Controller for Harmonic Elimination in PWM Voltage Source Inverters // INTELEC 07. Rome (Italy). 2007. Pp. 236—241.

6. Youqing Wan, Furong Gao, Francis J. Doyle III Survey on Iterative Learning Control, Repetitive Control, and Run-To-Run Control // J. Process Control Online. 2009. V. 19. Pp. 1589—1600.

7. Steinbuch M. Repetitive Control for Systems with Uncertain Period-time // Automatica Online. 2002. V. 38. Pp. 2103—2109.
---
Для цитирования: Кульманов В.И., Анучин А.С., Шпак Д.М., Беляков Ю.О., Остриров В.Н. Моделирование самообучающейся системы управления инвертором преобразователя частоты для подавления высших гармоник // Вестник МЭИ. 2017. № 4. С. 75—82. DOI: 10.24160/1993-6982-2017-4-75-82.
#
1. Gruzkov S.A. i dr. Elektrooborudovanie Letatelnykh Apparatov. T. 1. Sistemy Elektrosnabzheniia Letatelnykh Apparatov. M.: Izd-vo MРEI, 2005. (in Russian).

2. Anuchin A.S., Kulmanov V.I., Belyakov Y.O. Simulation of Power Converter Control System with Compensation of Harmonic Distortion in Output Voltage Waveform. SIBCON-2015. Omsk. 2015:83—89.

3. GOST R 54073—2010. Sistemy Elektrosnabzheniia Samoletov i Vertoletov. Obshchie Trebovaniia i Normy Kachestva Elektroenergii. (in Russian).

4. Nikolskii A.A. Tochnye Samoobuchaiushchiesia Elektroprivody Stankov Nekruglogo Tocheniia. M.: Advansed Soliushnz, 2016. (in Russian).

5. Sufen Chen, Y. M. Lai, Siew-Chong Tan, Chi K. Tse. Optimal Design of Repetitive Controller for Harmonic
Elimination in PWM Voltage Source Inverters. INTELEC 07. Rome (Italy). 2007:236—241.

6. Youqing Wan, Furong Gao, Francis J. Doyle III Survey on Iterative Learning Control, Repetitive Control, and Run-To-Run Control. J. Process Control Online. 2009;19:1589—1600.

7. Steinbuch M. Repetitive Control for Systems with Uncertain Period-time. Automatica Online. 2002;38:2103-2109.
Published
2019-01-16
Section
Electrical Engineering (05.09.00)