Consideration of Gas-Turbine and Combined-Cycle Plants in an Analysis of Transients in an Electric Power System

  • Олег [Oleg] Владимирович [V.] Бахмисов [Bakhmisov]
  • Олег [Oleg] Николаевич [N.] Кузнецов [Kuznetsov]
Keywords: gas turbine units, combined-cycle plants, dynamic simulation, renewable sources of energy

Abstract

Gas turbine units and combined-cycle plants account for a significant share in the mix of generating capacities. New conditions of the energy market have an effect on the electric power system features. In some countries, gas turbines have become the main reserve for frequency control in the grid. Under such conditions, accurate modeling of gas turbines with due regard to their specific features is becoming of significant importance. A detailed gas turbine model cannot be constructed without carefully analyzing the behavior of the gas turbine unit control systems during transients. The article describes the specific features of gas turbine units and combined-cycle plants that have to be taken into account in studying electromechanical transients and frequency control matters in the grid. These features include, in particular, a drop of the gas turbine maximum power output during frequency excursions with respect to its nominal level, unstable operation of control systems, and blowout under the conditions of large disturbances caused by short-circuit faults or abrupt changes of load. The gas turbine models used in the modern software systems are subjected to a comparative analysis, and recommendations on selecting the gas turbine model are given depending on the study objectives and power plant operating modes. Calculations of electromechanical transients in an electric power system carried out using different gas turbine models are presented. Differences between the behavior of gas turbine unit and combined-cycle plant control systems during transients are shown. Some problems concerned with the influence of gas turbine units on the performance of a power system containing a large fraction of renewable sources of energy are discussed.

Information about authors

Олег [Oleg] Владимирович [V.] Бахмисов [Bakhmisov]

Workplace Power Electrical Systems Dept., NRU MPEI

Occupation Ph.D.-student

Олег [Oleg] Николаевич [N.] Кузнецов [Kuznetsov]

Science degree: Ph. D. (Techn.)

Workplace Power Electrical Systems Dept., NRU MPEI

Occupation associate professor, Head of Research Laboratory

References

1. PJM defends Market Structure, Cautions Against State Intervention in New Report [Электрон. ресурс] http://www.utilitydive.com/news/pjm-defends-market- structure-cautions-against-state-intervention-in-new- re/419014/ (дата обращения 12.05.2016)

2. Зысин Л.В. Парогазовые и газотурбинные тепловые электростанции. СПб.: Изд.-во Политехн. ун-та, 2010.

3. Александров А.С., Жуков В.В., Кузьмичев В.А. О некоторых проблемах надежности и живучести электростанций с парогазовыми установками // Энергетик. 2012. № 12. C. 35—39.

4. Катаев А., Опадчий Ф. Рынок мощности. Из- менение модели при переходе от дефицита к избытку // ЭнергоРынок. 2016. № 7. C. 34—41.

5. Balaghi Enalou H., Abbasi Soreshjani E. A Detailed Governor-Turbine Model for Heavy-Duty Gas Turbines with a Careful Scrutiny of Governor Features // IEEE Trans. Power Syst. 2015. V. 30. No. 3. Pp. 1435—1441.

6. Rowen W.I. Simplified Mathematical Representa- tions of Heavy-Duty Gas Turbines // J. Eng. Power. 1983. V. 105. No. 83. P. 865.

7. Rowen W.I. Simplified Mathematical Representati- ons of Single-Shaft Gas Turbines in Mechanical Drive Services // Turbo Mach. Int. 1992. V. 33. No. 5. Pp. 26—32.

8. CIGRE Task Force C4.02.25. Modeling of Gas Turbines and Steam Turbines in Combined Cycle Power Plants. 2003.

9. Power System Dynamic Performance Committee, Power System Stability Subcommittee // Proc. IEEE Dynamic Models for Turbine-Governors in Power System Studies PES Resource Center. 2013.

10. Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies // IEEE Trans. Power Syst. 1994. V. 9. No. 3. Pp. 1698—1708.

11. Power System Dynamic Performance Committee, Power System Stability Subcommittee // IEEE PES Resource Center. 2013.

12. NERC MOD-027-1. List of Acceptable Models for Use in Dynamic Simulation. PJM Interconnection. 2014. Pp. 1—6.

13. Yee S.K., Milanovic J.V., Hughes F.M. Overview and Comparative Analysis of Gas Turbine Models for System Stability Studies // IEEE Trans. Power Syst. 2008. V. 23. No. 1. Pp. 108—118.

14. Shalan H., Hassan M., Bahgat A. Comparative Study on Modeling of Gas Turbines in Combined Cycle Power Plants // Proc. 14th Intern. Middle East Power Syst. Conf. 2010. Pp. 970—976.

15. Centeno. P., Egido I., Domingo C. Review of Gas Turbine Models for Power System Stability Studies // Proc. 9th Spanish Port. Congr. Electr. Eng. 2005. Pp. 1—6.

16. Бахмисов О.В., Кузнецов О.Н. Методика моделирования газотурбинных и парогазовых установок большой мощности при исследовании процессов в ЭЭС // Электричество. 2016. № 5. C. 27—34.

17. Бахмисов О.В., Кузнецов О.Н. Выбор моделей газотурбинных и парогазовых установок для исследования процессов в ЭЭС // Электричество. 2016. № 9. C. 15—22.

18. Kunitomi K., Kurita A., Okamoto H. Modeling Frequency Dependency of Gas Turbine Output // Power Eng. Soc. Winter Meet. 2001. V. 2. Pp. 678—683.

19. Kunitomi K. e. a. Modeling Combined-Cycle Power Plant for Simulation of Frequency Excursions // IEEE Trans. on Power Syst. 2003. V. 18. No. 2. Pp. 724—729.

20. Pourbeik P. Modeling of Combined-Cycle Power Plants for Power System Studies // IEEE Power Eng. Soc. Gen. Meet. 2003. V. 3. Pp. 1308—1313.

21. Dynamic Models Package Standard-1, GMB Dynamic Models for PSS® Software Product Suite, Revision 1.7 [Электрон. ресурс] http://www.energy.siemens.com/ hq/pool/hq/services/power-transmission-distribution/power- technologies-international/software-solutions/BOSL_ Controllers_Standard-1.pdf (дата обращения 01.01.2016)

22. Neplan. Turbine-Governor Models, Standard Dynamic Turbine-Governor Systems in NEPLAN Power System Analysis Tool [Офиц. сайт] http://www.neplan.ch/ wp-content/uploads/2015/08/Nep_TURBINES_GOV.pdf (дата обращения 01.08.2017)

23. Balling L. Fast Cycling and Rapid Start-Up: New Generation of Plants // Mod. Power Syst. 2011. No. 1. Pp. 35–41.

24. Fallis A.G. Grid requirements on CCGT plants [Электрон. ресурс] http://www.cigre.org/var/cigre/ storage/original/application/2a65278599fd0774f23cd0377 c2b3809.pdf (дата обращения 01.04.2016)

25. Виноградов А.Ю., Герасимов А.С., Козлов А.В., Смирнов А.Н. Моделирование систем регулирования газотурбинных установок для обеспечения их надежной параллельной работы с ЕЭС России // Электрические станции. 2015. № 11. C. 54—60.

26. Meegahapola L., Flynn D. Characterization of Gas Turbine Lean Blowout During Frequency Excursions in Power Networks // IEEE Trans. Power Syst. 2014. No. 99. Pp. 1—11.

27. Exhaust Temperature Spreads — MDA Turbines [Электрон. ресурс] https://www.mdaturbines.com/ resources/exhaust-temperature-spreads/ (дата обращения 04.06.2016)

28. Цанев С.В., Буров В.Д., Ремезов А.Н. Газотурбинные и парогазовые установки тепловых электростанций. М.: Изд-во МЭИ, 2006.
---
Для цитирования: Бахмисов О.В., Кузнецов О.Н. Применение газотурбинных и парогазовых установок в расчетах переходных процессов в электроэнергетической системе // Вестник МЭИ. 2017. № 5. С. 15—24. DOI: 10.24160/1993-6982-2017-5-15-24.
#
1. PJM defends Market Structure, Cautions Against State Intervention in New Report [Elektron. Resurs] http:// www.utilitydive.com/news/pjm-defends-market-structure- cautions-against-state-intervention-in-new-re/419014/ (Data Obrashcheniya 12.05.2016)

2. Zysin L.V. Parogazovye i Gazoturbinnye Teplovye Elektrostantsii. SPb.: Izd.-vo Politekhn. un-ta, 2010.

3. Aleksandrov A.S., Zhukov V.V., Kuz'michev V.A. O Nekotoryh Problemah Nadezhnosti i Zhivuchesti Elektrostantsiy s Parogazovymi Ustanovkami. Energetik. 2012;12:35—39. (in Russian).

4. Kataev A., Opadchiy F. Rynok Moshchnosti. Izmenenie Modeli pri Perekhode ot Defitsita k Izbytku. EnergoRynok. 2016;7:34—41. (in Russian).

5. Balaghi Enalou H., Abbasi Soreshjani E. A Detailed Governor-Turbine Model for Heavy-Duty Gas Turbines with a Careful Scrutiny of Governor Features. IEEE Trans. Power Syst. 2015;30;3:1435—1441.

6. Rowen W.I. Simplified Mathematical Representa- tions of Heavy-Duty Gas Turbines. J. Eng. Power. 1983;105;83:865.

7. Rowen W.I. Simplified Mathematical Representati- ons of Single-Shaft Gas Turbines in Mechanical Drive Services.Turbo Mach. Int. 1992;33;5:26—32.

8. CIGRE Task Force C4.02.25. Modeling of Gas Turbines and Steam Turbines in Combined Cycle Power Plants. 2003.

9. Power System Dynamic Performance Committee, Power System Stability Subcommittee. Proc. IEEE Dynamic Models for Turbine-Governors in Power System Studies PES Resource Center. 2013.

10. Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies. IEEE Trans. Power Syst. 1994;9;3:1698—1708.

11. Power System Dynamic Performance Committee, Power System Stability Subcommittee. IEEE PES Resource Center. 2013.

12. NERC MOD-027-1. List of Acceptable Models for Use in Dynamic Simulation. PJM Interconnection. 2014:1—6.

13. Yee S.K., Milanovic J.V., Hughes F.M. Overview and Comparative Analysis of Gas Turbine Models for System Stability Studies. IEEE Trans. Power Syst. 2008;23;1:108—118.

14. Shalan H., Hassan M., Bahgat A. Comparative Study on Modeling of Gas Turbines in Combined Cycle Power Plants. Proc. 14th Intern. Middle East Power Syst. Conf. 2010:970—976.

15. Centeno P., Egido I., Domingo C. Review of Gas Turbine Models for Power System Stability Studies. Proc. 9th Spanish Port. Congr. Electr. Eng. 2005:1—6.

16. Bahmisov O.V., Kuznetsov O.N. Metodika Modelirovaniya Gazoturbinnyh i Parogazovyh Ustanovok Bol'shoy Moshchnosti pri Issledovanii Protsessov v EES. Elektrichestvo. 2016;5:27—34. (in Russian).

17. Bahmisov O.V., Kuznetsov O.N. Vybor Modeley Gazoturbinnyh i Parogazovyh Ustanovok dlya Issledovaniya Protsessov v EES. Elektrichestvo. 2016;9: 15—22. (in Russian).

18. Kunitomi K., Kurita A., Okamoto H. Modeling Frequency Dependency of Gas Turbine Output.Power Eng. Soc. Winter Meet. 2001;2:678—683.

19. Kunitomi K. e. a. Modeling Combined-Cycle Power Plant for Simulation of Frequency Excursions. IEEE Trans. on Power Syst. 2003;18;2:724—729.

20. Pourbeik P. Modeling of Combined-Cycle Power Plants for Power System Studies. IEEE Power Eng. Soc. Gen. Meet. 2003;3:1308—1313.

21. Dynamic Models Package Standard-1, GMB Dynamic Models for PSS® Software Product Suite, Revision 1.7 [Elektron. Resurs] http://www.energy.siemens. com/hq/pool/hq/services/power-transmission-distribution/ power-technologies-international/software-solutions/ BOSL_Controllers_Standard-1.pdf (Data Obrashcheniya 01.01.2016)

22. Neplan. Turbine-Governor Models, Standard Dynamic Turbine-Governor Systems in NEPLAN Power System Analysis Tool [Ofits. Sayt] http://www.neplan.ch/ wp-content/uploads/2015/08/Nep_TURBINES_GOV.pdf (Data Obrashcheniya 01.08.2017)

23. Balling L. Fast Cycling and Rapid Start-Up: New Generation of Plants.Mod. Power Syst. 2011;1:35–41.

24. Fallis A.G. Grid requirements on CCGT plants [Elektron. Resurs] http://www.cigre.org/var/cigre/ storage/original/application/2a65278599fd0774f23cd03 77c2b3809.pdf (Data Obrashcheniya 01.04.2016)

25. Vinogradov A.YU., Gerasimov A.S., Kozlov A.V., Smirnov A.N. Modelirovanie Sistem Regulirovaniya Gazoturbinnyh Ustanovok dlya Obespecheniya Ih Nadezhnoy Parallel'noy Raboty s EES Rossii. Elektricheskie Stantsii. 2015;11:54—60. (in Russian).

26. Meegahapola L., Flynn D. Characterization of Gas Turbine Lean Blowout During Frequency Excursions in Power Networks. IEEE Trans. Power Syst. 2014;99:1—11.

27. Exhaust Temperature Spreads — MDA Turbines [Elektron. Resurs] https://www.mdaturbines.com/ resources/exhaust-temperature-spreads/ (Data Obra- shcheniya 04.06.2016)

28. Tsanev S.V., Burov V.D., Remezov A.N. Gazoturbinnye i Parogazovye Ustanovki Teplovyh Elektrostantsiy. M.: Izd-vo MPEI, 2006. (in Russian).
---
For citation: Bakhmisov О.V., Kuznetsov О.N. Consideration of Gas-Turbine and Combined-Cycle Plants in an Analysis of Transients in an Electric Power System. MPEI Vestnik. 2017; 5:15—24. (in Russian). DOI: 10.24160/1993-6982-2017-5-15-24.
Published
2019-01-17
Section
Power engineering (05.14.00)