Development Trends of Power Sources for Implantable Medical Devices

  • Сергей [Sergey] Анатольевич [A.] Фатеев [Fateev]
Keywords: fluorocarbon-lithium cell, fullerenes, heart pacemaker

Abstract

Medical equipment powered from electrochemical sources of energy plays a vital role in treating illnesses of patients. The power sources used in such devices shall ensure a high level of safety and reliability. In addition, these power sources shall have a long service life to avoid the need of frequently replacing them. Recent advances in electronics have made it possible to drastically reduce the internal power consumed by medical devices, in particular, a heart pacemaker, with simultaneously making them more compact, durable and reliable, and with extending their functionality. Around 600 000 heart pacemakers are implanted every year around the world, and the total number of people bearing different types of heart pacemakers implanted in them has already exceeded 3 million persons. Lithium electrochemical cells are now widely used in various military and civilian products with high power output. The overall tendency toward making portable electronic devices more compact generates the need to develop still more compact lithium current sources with increased permissible power and lifetime. One possible way to develop small current sources with a longer service life lies in using cathode materials with higher energy. Fluorinated carbon (CFx), which is often used with a lithium anode in primary current sources for military devices and in implantable medical devices, is a salient example of such material. The advances made in the development of elements for the lithium-fluorinated carbon electrochemical system for implantable medical devices are presented, and significant advantages of these devices over the lithium-iodine elements routinely used in heart pacemakers are shown. Different developments of power supply technologies for heart pacemakers are briefly reviewed, and an alternative to lithium-iodine batteries for the nearest future is presented with an analysis of the discharge characteristics, longevity, and reliability. In addition, the use of various additives in the fluorocarbon cathode for improving the cell’s discharge characteristics and the conditions for monitoring the cell state are considered.

Information about author

Сергей [Sergey] Анатольевич [A.] Фатеев [Fateev]

Science degree:

Dr. Sci. (Techn.), Academic of Russian Academy of Natural Sciences

Workplace

Chemistry and Electric-Chemical Energetic Dept., NRU MPEI

Occupation

Leading Researcher

References

1. Шальдах М. Электрокардиотерапия. СПб.: Изд- во Северо-Запад, 1992.

2. Holmes C.F. The Bourner Lecture: Electrochemical Power Sources — an Important Contributor to Modern Health Care // J. Power Sources. 1997. V. 1 — 2. Pp. 15—20.

3. Greatbatch W. Origins of Implantable Cardiac Pacemaker // J. Cardiaovasc Nurs. 1991. V. 5. Pp. 80—85.

4. Holmes C.F. The Role of Electrochemical Power Sources in Modern Health Care // Interface. 1999. V. 8. No. 3. Pp. 32—34.

5. Love C.J. Handbook of Cardiac Pacing. Austin (USA): Landes Bioscience, 1999.

6. Crompton T.R. Small Batteries. London: The Macmillan Press Ltd., 1982.

7. Holmes C.F. The Role of Chemical Power Sources in Modern Health Care // The Electrochemical Soc. Interface. 1999. Pp. 32—34.

8. SarmaMallela V., Ilankumaran V., Srinivasa N. Trends in Cardiac Pacemaker Batteries // Indian Pacing and Electrophysiology J. 2004. V. 4 (4). Pp. 201—212.

9. Материалы II Всерос. съезда аритмологов. М.:Изд-во НЦССХ им. А.Н. Бакулева РАМН, 2007.

10. Holmes C.F. Electrochemical Power sources and the treatment of Human Illness // The Electrochemical Soc. Interface. 2003. Pp. 26—29.

11. Skundin A.M., Fateev S.A., Kulova T.L. Battery for Pacemaker: an Alternative to Lithium-iodine System // Proc. 2nd ABA Advanced Batteries and Accumulators Intern. Conf. Brno, 2001.

12. Rudakov V.M., Skundin A.M, Fateev S.A. Reliability Checking of Li/CFx Cells for Medical Applications // Proc. 3rd Baltic Conf. Elecrochemistry. Gdansk, 2003. P. 133.

13. Фатеев С.А., Кулова Т.В., Скундин А.М. Литий-фторуглеродные источники питания для имплантируемых электрокардиостимуляторов // Электрохимическая энергетика. 2002. Т. 2. № 2. С. 9.

14. Пат. 33 000 РФ. Источник тока для имплантируемых медицинских приборов / С.А. Фатеев // Бюлл. изобрет. 2003. № 28.

15. Фатеев С.А., Рынсков Е.В., Ясюкевич Д.О. Источники тока для имплантируемых медицинских приборов // Вестник РАЕН. 2007. Т. 7. № 3. С. 33—36.

16. А.с. СССР № 1829726. Электроизоляционная композиция / Фатеев С.А. и др. 1986.

17. Можаров В.М. и др. Опыт исследования, разработки и производства литий-фторуглеродных источников тока для имплантируемых электрокардиостимуляторов // Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах: Материалы VII Междунар. конф. Саратов: Изд-во Саратовского ун-та, 2002. С. 114.

18. Фатеев С.А., Штолина Н.В. Исследование сохраняемости Li-CFx источников тока для кардиостимуляторов // Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах: Материалы XII Междунар. конф. Краснодар, 2012. С. 99—102.

19. Фатеев С.А., Полякова Н.В., Кондратов В.П. Испытание литий-фторуглеродных источников тока для кардиостимуляторов в условиях длительного разряда // Электрохимическая энергетика. 2012. Т. 12. № 3. С. 88—96.

20. Фатеев С.А. и др. Определение остаточной емкости литий-фторуглеродных источников тока для кардиоэлектроники // Электрохимическая энергетика. 2008. Т. 8. № 1. С. 40—45.

21. Фатеев С.А., Полякова Н.В., Ефимов О.Н. Современные неорганические фториды // Intersibfluorine —2006: Сб. трудов II Междунар. сибирского семинара по химии и технологии современных неорганических фторидов. Томск, 2006. С. 309.

22. Egorov A.M. , Smirnov S.E., Putsylov I.A, Fateev S.A. A study of Electrodes Based on Fluorinated Fullerene Black // Russian J. Appl. Chem. 2012. V. 85. No. 11. Pp. 1695—1698.

23. Пуцылов И.А. и др. Исследование свойств катодных материалов на основе фторированных углеродных нанотрубок // Перспективные материалы. 2013. № 11. С. 29—34.

24. Егоров А.М., Смирнов С.Е. Литий-фторуглеродные источники тока на основе наноматериалов // Вестник МЭИ. 2015. № 3. С. 53—57.

25. Egorov A.M., Smirnov S.E., Putsylov I.A, Fateev S.A. Effect of Mechanical Activation on Characteristics of Electrodes Based on Fluorinated Carbon Nanotubes // Russian J. Appl. Chem. 2016. V. 89. No. 3. Рp. 448—451.

26. Chen K. e. a. Hybrid Cathode Lithium Batteries for Implantable Medical Applications // J. Power Sources. 2006. V. 162. Pp. 837—840.

27. Pat. 027612 USA. Non-aqueous Electrochemical Cell Having a Mixture of at Least Three Cathode Materials Therein. 2009.

28. Ignatova, A.A., Tulibaeva, G.Z., Yarmolenko, O.V., Fateev, S.A. Electrolyte Systems for Primary Lithium-fluorocarbon Power Sources and Their Working Efficiency in a Wide Temperature Range // Russian J. Electrochemistry. 2017. V. 53. No. 3. Pp. 292—301.

29. Ignatova A.A. e. a. Influence of 15-crown-5 Additive to a Liquid Electrolyte on the Performance of Li/CFx — Systems at Temperatures up to −50 °C // J. Power Sources. 2016. V. 309. Pp. 116—122.

30. Пат. № 2592646 РФ. Низкотемпературный литий-фторуглеродный элемент / С.А. Фатеев и др. // Бюлл. изобрет. 2016. № 21.

31. Grubbs R.H. Handbook of Metathesis. Wiley, 2003.
---
Для цитирования: Фатеев С.А. Тенденции развития источников тока для имплантируемых медицинских приборов // Вестник МЭИ. 2018. № 2. С. 102—113. DOI: 10.24160/1993-6982-2018-2-102-113.
#
1. Shal'dakh M. Elektrokardioterapiya. SPb.: Izd-vo Severo-zapad, 1992. (in Russian).

2. Holmes C.F. The Bourner Lecture: Electrochemical Power Sources — an Important Contributor to Modern Health Care. J. Power Sources. 1997;1 — 2:15—20.

3. Greatbatch W. Origins of Implantable Cardiac Pacemaker. J. Cardiaovasc Nurs. 1991;5:80—85.

4. Holmes C.F. The Role of Electrochemical Power Sources in Modern Health Care. Interface. 1999;8.;3:32—34.

5. Love C.J. Handbook of Cardiac Pacing. Austin (USA): Landes Bioscience, 1999.

6. Crompton T.R. Small Batteries. London: The Macmillan Press Ltd., 1982.

7. Holmes C.F. The Role of Chemical Power Sources in Modern Health Care. The Electrochemical Soc. Interface. 1999:32—34.

8. SarmaMallela V., Ilankumaran V., Srinivasa N. Trends in Cardiac Pacemaker Batteries. Indian Pacing and Electrophysiology J. 2004;4 (4):201—212.

9. Materialy II Vseros. S′Ezda Aritmologov. M.:Izd-vo NTSSSKH im. A.N. Bakuleva RAMN, 2007. (in Russian).

10. Holmes C.F. Electrochemical Power sources and the treatment of Human Illness. The Electrochemical Soc. Interface. 2003:26—29.

11. Skundin A.M., Fateev S.A., Kulova T.L. Battery for Pacemaker: an Alternative to Lithium-Iodine System. Proc. 2nd ABA Advanced Batteries and Accumulators Intern. Conf. Brno, 2001.

12. Rudakov V.M., Skundin A.M, Fateev S.A. Reliability Checking of Li/CFx Cells for Medical Applications. Proc. 3rd Baltic Conf. Elecrochemistry. Gdansk, 2003. P. 133.

13. Fateev S.A., Kulova T.V., Skundin A.M. Litiy- ftoruglerodnye Istochniki Pitaniya dlya Implantiruemykh Elektrokardiostimulyatorov. Elektrokhimicheskaya Ener- getika. 2002;2; 2:9. (in Russian).

14. Pat. 33 000 RF. Istochnik Toka dlya Implantiruemykh Meditsinskikh Priborov / S.A. Fateev. Byull. Izobret. 2003;28. (in Russian).

15. Fateev S.A., Rynskov E.V., Yasyukevich D.O. Istochniki Toka dlya Implantiruemykh Meditsinskikh Priborov. Vestnik RAEN. 2007;7;3:33—36. (in Russian).

16. A.s. SSSR № 1829726. Elektroizolyatsionnaya Kompozitsiya / Fateev S.A. i dr. 1986. (in Russian).

17. Mozharov V.M. i dr. Opyt Issledovaniya, Razrabot ki i Proizvodstva Litiy-ftoruglerodnykh Istochnikov To- ka dlya Implantiruemykh Elektrokardiostimulyatorov. Fundamental'nye Problemy Preobrazovaniya Energii v Litievykh Elektrokhimicheskikh Sistemakh: Materialy VII Mezhdunar. Konf. Saratov: Izd-vo Saratovskogo Un- ta, 2002:114. (in Russian).

18. Fateev S.A., Shtolina N.V. Issledovanie Sokhranyaemosti Li-CFx Istochnikov Toka dlya Kardiosti- mulyatorov. Fundamental'nye Problemy Preobrazovaniya Energii v Litievykh Elektrokhimicheskikh Sistemakh: Materialy XII Mezhdunar. Konf. Krasnodar, 2012:99—102. (in Russian).

19. Fateev S.A., Polyakova N.V., Kondratov V.P. Ispytanie Litiy-ftoruglerodnykh Istochnikov Toka dlya Kardiostimulyatorov v Usloviyakh Dlitel'nogo Razryada. Elektrokhimicheskaya Energetika. 2012;12;3:88—96. (in Russian).

20. Fateev S.A. i dr. Opredelenie Ostatochnoy Emkosti Litiy-ftoruglerodnykh Istochnikov Toka dlya Kardioelektroniki. Elektrokhimicheskaya Energetika. 2008;8;1:40—45. (in Russian).

21. Fateev S.A., Polyakova N.V., Efimov O.N. Sovre- mennye Neorganicheskie Ftoridy. Intersibfluorine —2006: Sb. Trudov II Mezhdunar. Sibirskogo Seminara po Khimii i Tekhnologii Sovremennykh Neorganicheskikh Ftoridov. Tomsk, 2006:309. (in Russian).

22. Egorov A.M. , Smirnov S.E., Putsylov I.A, Fateev S.A. A study of Electrodes Based on Fluorinated Fullere- ne Black. Russian J. Appl. Chem. 2012;85;11:1695—1698.

23. Putsylov I.A. i dr. Issledovanie Svoystv Katodnykh Materialov na Osnove Ftorirovannykh Uglerodnykh Nanotrubok. Perspektivnye Materialy. 2013;11:29—34. (in Russian).

24. Egorov A.M., Smirnov S.E. Litiy-ftoruglerodnye Istochniki Toka na Osnove Nanomaterialov. Vestnik MPEI. 2015;3:53—57. (in Russian).

25. Egorov A.M., Smirnov S.E., Putsylov I.A, Fateev S.A. Effect of Mechanical Activation on Characteristics of Electrodes Based on Fluorinated Carbon Nanotubes. Russian J. Appl. Chem. 2016;89;3:448—451.

26. Chen K. e. a. Hybrid Cathode Lithium Batteries for Implantable Medical Applications. J. Power Sources. 2006;162:837—840.

27. Pat. 027612 USA. Non-aqueous Electrochemical Cell Having a Mixture of at Least Three Cathode Materials Therein. 2009.

28. Ignatova, A.A., Tulibaeva, G.Z., Yarmolenko, O.V., Fateev, S.A. Electrolyte Systems for Primary Lithium- fluorocarbon Power Sources and Their Working Efficiency in a Wide Temperature Range. Russian J. Electrochemistry. 2017;53;3:292—301.

29. Ignatova A.A. e. a. Influence of 15-crown-5 additive to a Liquid Electrolyte on the Performance of Li/CFx — Systems at Temperatures up to −50 °C. J. Power Sources. 2016;309:116—122. (in Russian).

30. Pat. 2592646 RF. Nizkotemperaturnyy Litiy- ftoruglerodnyy Element / S.A. Fateev i dr. Byull. Izobret. 2016;21. (in Russian).

31. Grubbs R.H. Handbook of Metathesis. Wiley, 2003.
Published
2019-02-05
Section
Electrical Engineering (05.09.00)