Minimizing Intermodulation Distortions in Power Amplification and Processing of Radio Frequency Signals in Navigation and Communication

  • Леонид [Leonid] Алексеевич [A.] Белов [Belov]
Keywords: power amplification, saturation, linearization, pre-distortion, passive intermodulation, electromagnetic compatibility

Abstract

Intermodulation frequency components may occur in power amplification cascades and in passive signal processing channels with a continuous spectrum, which are not available in their input signals. Cross-distortion of transmitted information occurs in amplifying the power of several modulated signals in the common frequency band. They manifest themselves in that a strong signal asynchronously suppresses a weak one, and that the total output power has a decreased level depending on the ratio of signal levels in the channels. To overcome possible contradictions in choosing the active element operating mode in regard of the saturation level, a compromise should be reached between increasing the energy efficiency of the active element, the permissible level of intermodulation in the operating frequency band, and the level of interference in the adjacent frequency bands in accordance with the electromagnetic compatibility (EMC) requirements. The methods used for estimating the power level of intermodulation products in amplifying microwave signals, namely, the one based on a two-tone signal, the one involving a multifrequency test; the one based on the relative noise interference level in the working band (noise power rate, NPR), the method of interference in the adjacent frequency band (ACPR), and the distortion phase diagram method for signals with phase manipulation. The methods used to linearize power amplifier cascades, including the use of feed-forward and feedback circuits, and pre-distortion of amplitude and phase characteristics are arranged in a systematic order. The parameters of adaptive pre-distorting linearizing circuits correcting the AM/AM amplitude compression and AM/FM amplitude-phase conversion are given. Passive intermodulation (PIM) effects that are present in the signal transmission path components give rise to unacceptable interference for the receiving channels operating in adjacent frequency bands. Recommendations on choosing the technology for manufacturing passive components minimizing the level of such interference are formulated. The parameters and characteristics of laboratory instruments for analyzing passive intermodulation levels, as well as and portable testers used for locating the sources of intermodulation interference of different orders and for measuring its level according to a standardized method are compared.

Information about author

Леонид [Leonid] Алексеевич [A.] Белов [Belov]

Science degree:

Ph.D. (Techn.)

Workplace

Formation and Processing of Radio Signals Dept., NRU MPEI

Occupation

Professor

References

1. Спутниковая связь и вещание. М.: Радио и связь, 1997.

2. Colantonio P., Gianini F., Limiti E. High Efficiency RF and Microwave Solid State Power Amplifiers. Wiltshire (Great Britain): Wiley, 2009.

3. Сечи Ф., Буджатти М. Мощные твердотельные СВЧ-усилители. М.: Техносфера, 2016.

4. Belov L.A., Smolskiy S.M., Kochemasov V.N. Handbook of RF, Microwave, and Millimeter Wave Components. Boston, London: Artech House, 2012.

5. Белов Л.А., Кондрашов А.С., Петушков С.В. Корреляционная оценка уровня интермодуляционных искажений СВЧ-сигналов в усилителях мощности // Электросвязь. 2015. № 5. С. 36—41.

6. Cолнцев В.А., Шульга А.И. Анализ подавления нелинейных искажений в усилителях сигналов огибающей // Радиотехника и электроника. 2012. Т. 57. № 2. С. 219—229.

7. Белов Л.А., Кондрашов А.С., Рожков В.М., Ромащенко К.В. Повышение линейности и энергетической эффективности усилителей мощности широкополосных СВЧ-сигналов // Электросвязь. 2012. № 5. С. 23—25.

8. Белов Л.А. и др. Искажения фазоманипулированных сигналов СВЧ в усилителях мощности // Вестник МЭИ. 2013. № 3. С. 122—126.

9. Аверина Л.И., Бобрешов А.М., Шутов В.Д. Повышение линейности передающего тракта методом цифровых предыскажений // Нелинейный мир. 2013. № 10. С. 720—727.

10. Петушков С.В., Белов Л.А., Кондрашов А.С. Использование четных гармоник для цифрового предыскажения входного сигнала при линеаризации амплитудных характеристик СВЧ-усилителя мощности // T-Comm — Телекоммуникации и транспорт. 2016. Т. 10. № 6. C. 3—7.

11. Wilkerson J.R. е. a. Distributed Passive Intermodulation Distortion on Transmission Lines // IEEE Trans. MTT. 2011. V. 59. No. 5. Pp. 1190—1205.

12. Hartman R. Passive Intermodulation (PIM) Testing Moves to the Base Station // J. Microwave. 2011.

13. Белов Л.А., Кочемасов В.Н., Строганова Е.П. Пассивная интермодуляция в СВЧ-цепях и сетях передачи данных: механизмы появления, методы измерения, споcобы снижения // Электроника-НТБ. 2015. № 3. C. 80—91.

14. IEC62037-2(2012). Пассивные радиочастотные и микроволновые устройства для измерения уровня взаимной модуляции. Ч. 1 — 8.

15. Богданов Ю., Кочемасов В., Хасьянова Е. Фольгированные диэлектрики — как выбрать оптимальный вариант для печатных плат ВЧ/СВЧ- диапазонов // Печатный монтаж. 2013. № 2 (0043). С. 156—168; № 3 (0044). С. 142—147.

16. Bell T. Mitigating External Sources of Passive Intermodulation // Anritsu Company. 2013. № 11410-0756.

17. Джуринский К., Покровский Е. Радиочастотные соединители: современное состояние // Электроника-НТБ. 2014. № 7. C. 28—37.

18. Белоус А.И., Мерданов М.К., Шведов С.В. СВЧ-электроника в системах радиолокации и связи. Техническая энциклопедия. Кн. 2. Гл. 13. Методы и средства обеспечения надежности радиолокационных систем и систем связи. М.: Техносфера, 2016. С. 1020—1127.
---
Для цитирования: Белов Л.А. Минимизация интермодуляционных искажений при усилении мощности и обработке радиосигналов в навигации и связи // Вестник МЭИ. 2018. № 2. С. 114—122. DOI: 10.24160/1993-6982-2018-2-114-122.
#
1. Sputnikovaya Svyaz' i Veshchanie. M.: Radio i Svyaz', 1997. (in Russian).

2. Colantonio P., Gianini F., Limiti E. High Efficiency RF and Microwave Solid State Power Amplifiers. Wiltshire (Great Britain): Wiley, 2009.

3. Sechi F., Budzhatti M. Moshchnye Tverdotel'nye SVCH-usiliteli. M.: Tekhnosfera, 2016. (in Russian).

4. Belov L.A., Smolskiy S.M., Kochemasov V.N. Handbook of RF, Microwave, and Millimeter Wave Components. Boston, London: Artech House, 2012.

5. Belov L.A., Kondrashov A.S., Petushkov S.V. Korrelyatsionnaya Otsenka Urovnya Intermodulyatsionnykh Iskazheniy SVCH-signalov v Usilitelyakh Moshchnosti. Elektrosvyaz'. 2015;5:36—41. (in Russian).

6. Colntsev V.A., Shul'ga A.I. Analiz Podavleniya Nelineynykh Iskazheniy v Usilitelyakh Signalov Ogibayushchey. Radiotekhnika i Elektronika. 2012;57;2:219—229. (in Russian).

7. Belov L.A., Kondrashov A.S., Rozhkov V.M., Romashchenko K.V. Povyshenie Lineynosti i Energeticheskoy Effektivnosti Usiliteley Moshchnosti Shirokopolosnykh SVCH-signalov. Elektrosvyaz'. 2012;5:23—25. (in Russian).

8. Belov L.A. i dr. Iskazheniya Fazomanipulirovan nykh Signalov SVCH v Usilitelyakh Moshchnosti. Vestnik MPEI. 2013;3:122—126. (in Russian).

9. Averina L.I., Bobreshov A.M., Shutov V.D. Povyshenie Lineĭnosti Peredayushchego Trakta Metodom Tsifrovykh Predyskazheniĭ. Nelineĭnyĭ Mir. 2013;10:720—727. (in Russian).

10. PetushkovS.V., BelovL.A., KondrashovA.S. Ispol'zovanie Chetnykh Garmonik dlya Tsifrovogo Predyskazheniya Vkhodnogo Signala pri Linearizatsii Amplitudnykh Kharakteristik SVCH-usilitelya Moshchnosti. T-Comm — Telekommunikatsii i Transport. 2016;10;6:3—7. (in Russian).

11. Wilkerson J.R. e. a. Distributed Passive Intermodulation Distortion on Transmission Lines. IEEE Trans. MTT. 2011;59;5:1190—1205.

12. Hartman R. Passive Intermodulation (PIM) Testing Moves to the Base Station. J. Microwave. 2011.

13. Belov L.A., Kochemasov V.N., Stroganova E.P. Passivnaya Intermodulyatsiya v SVCH-tsepyakh i Setyakh Peredachi Dannykh: Mekhanizmy Poyavleniya, Metody Izmereniya, Spocoby Snizheniya. Elektronika-NTB. 2015;3:80—91. (in Russian).

14. IEC 62037-2(2012). Passivnye Radiochastotnye i Mikrovolnovye Ustroystva dlya Izmereniya Urovnya Vzaimnoy Modulyatsii. Ch. 1 — 8. (in Russian).

15. Bogdanov Yu., Kochemasov V., Khas'yanova E. Fol'girovannye Dielektriki — kak Vybrat' Optimal'nyy Variant dlya Pechatnykh Plat VCH/SVCH-diapazonov. Pechatnyy Montazh. 2013;2 (0043):156—168; 3 (0044):142—147. (in Russian).

16. Bell T. Mitigating External Sources of Passive Intermodulation. Anritsu Company. 2013;11410-0756.

17. Dzhurinskiy K., Pokrovskiy E. Radiochastotnye Soediniteli: Sovremennoe Sostoyanie. Elektronika-NTB. 2014;7:28—37. (in Russian).

18. Belous A.I., Merdanov M.K., Shvedov S.V. SVCH-elektronika v Sistemakh Radiolokatsii i Svyazi. Tekhnicheskaya Entsiklopediya. Kn. 2. Gl. 13. Metody i Sredstva Obespecheniya Nadezhnosti Radiolokatsionnykh Sistem i Sistem Svyazi. M.: Tekhnosfera, 2016:1020—1127. (in Russian).
---
For citation: Belov L. A. Minimizing Intermodulation Distortions in Power Amplification and Processing of Radio Frequency Signals in Navigation and Communication. MPEI Vestnik. 2018;2:114—122. (in Russian). DOI: 10.24160/1993-6982-2018-2-114-122.
Published
2019-02-05
Section
Radio Engineering and Communications (05.12.00)