Modeling the Graphite Stack of RBMK-1000 Reactors Taking into Account Certain Features of Graphite Microstructure

  • Андрей [Andrey] Тарасович [T.] Алексеев [Alekseev]
  • Людмила [Lyudmila] Васильевна [V.] Сергеева [Sergeeva]
  • Александр [Aleksandr] Александрович [A.] Тутнов [Tutnov]
Keywords: graphite block, RBMK, cracks, microstructure, computer modeling

Abstract

Eleven RBMK-1000 reactors (the RBMK-1000 denotes a large-capacity pressure tube nuclear reactor for a power unit with a 1000 MW electric power output) are presently in operation in the Russian Federation. At the time when these reactors were only commissioned, their service life was assigned to be 30 years. However, the replacement capacities had not been commissioned, and studies of the state of reactor elements revealed that the reactor service life was far from having been exhausted. Therefore, it was decided to extend the operation of these reactors beyond their initially assigned lifecycle. One of the measures used to justify that decision was numerical simulation of the graphite stack behavior, because this element determines the reactor service life in view of impossibility to repair, anneal it, etc. In turn, to achieve the required accuracy of graphite stack numerical analysis, it is necessary to realistically calculate the state of individual graphite blocks from which it is assembled. This is a rather intricate problem because it involves the need to carry out combined thermal, neutronic, and strength calculations. In addition, the analysis must take into account that the graphite used in the RBMK reactor is an anisotropic material. In addition, there was a need to solve a very complicated problem of taking into account the two-phase structure of the graphite, because it consists of a binder and filler. The article presents a study of the effect the scale factor has on the reactor graphite behavior, which is taken into account by means of a phenomenological model. It is assumed that the microstresses arising in a graphite item have a significant influence on its behavior. The calculations were carried out, taking the RBMK reactor graphite block as an example, using a 3D finite element technique and a computer program that takes into account the anisotropy of the reactor graphite behavior under the effect of thermal and radiation factors, its creep, and possible occurrence of cracks.

Information about authors

Андрей [Andrey] Тарасович [T.] Алексеев [Alekseev]

Workplace

National Research Center «Kurchatov Institute»

Occupation

Ph.D.-student; Junior Researcher

Людмила [Lyudmila] Васильевна [V.] Сергеева [Sergeeva]

Science degree:

Dr.Sci. (Techn.)

Workplace

National Research Center «Kurchatov Institute»

Occupation

Leading Researcher

Александр [Aleksandr] Александрович [A.] Тутнов [Tutnov]

Science degree:

Dr.Sci. (Techn.)

Workplace

National Research Center «Kurchatov Institute»

Occupation

Professor, Head of Department

References

1. ГОСТ 26132—84. Коксы нефтяные и пековые. Метод определения микроструктуры.

2. РД ЭО 1.1.2.05.0788—2009. Руководство по расчету на прочность типовых узлов и деталей из графита реактора РБМК первого поколения.

3. Лоскутов О.Д., Маневский В.Н., Тутнов И.А. Феноменологическая модель формоизменения графита при воздействии облучения // Вопросы атомной науки и техники. Серия «Материаловедение и новые материалы». 1990. Вып. 1 (35).

4. Алексеев А.Т., Сергеева Л.В. О выборе критерия прочности при математическом моделировании поведения реакторного графита // Вестник МЭИ. 2017. № 2. С. 20—26.

5. Сергеева Л.В. Свидетельство о государственной регистрации программы для ЭВМ № 2011618428 «GRA3D». 2011.

6. Платонов П.А. и др. Радиационная деградация графита реакторов типа РБМК // Вопросы атомной науки и техники. Серия «Физика ядерных реакторов». 2016. Вып. 5. С. 105—118
---
Для цитирования: Алексеев А.Т., Сергеева Л.В., Тутнов А.А. Моделирование реакторного графита РБМК-1000 с учетом некоторых особенностей микроструктуры // Вестник МЭИ. 2018. № 3. С. 29—36. DOI: 10.24160/1993-6982-2018-3-29-36.
#
1. GOST 26132—84. Koksy Neftyanye i Pekovye. Metod Opredeleniya Mikrostruktury. (in Russian).

2. RD EO 1.1.2.05.0788—2009. Rukovodstvo po Raschetu na Prochnost' Tipovyh Uzlov i Detaley iz Grafita Reaktora RBMK Pervogo Pokoleniya. (in Russian).

3. Loskutov O.D., Manevskiy V.N., Tutnov I.A. Fenomenologicheskaya Model' Formoizmeneniya Grafita pri Vozdeystvii Oblucheniya. Voprosy Atomnoy Nauki i Tekhniki. Seriya «Materialovedenie i Novye Materialy». 1990;1 (35).

4. Alekseev A.T., Sergeeva L.V. O Vybore Kriteriya Prochnosti pri Matematicheskom Modelirovanii Povedeniya Reaktornogo Grafita. Vestnik MPEI. 2017;2:20—26. (in Russian).

5. Sergeeva L.V. Svidetel'stvo o Gosudarstvennoy Registratsii Programmy dlya EVM № 2011618428 «GRA3D». 2011. (in Russian).

6. Platonov P.A. i dr. Radiatsionnaya Degradatsiya Grafita Reaktorov Tipa RBMK. Voprosy Atomnoy Nauki i Tekhniki. Seriya «Fizika Yadernyh Reaktorov». 2016;5:105—118. (in Russian).
---
For citation: Alekseev A.T., Sergeeva L.V., Tutnov A.A. Modeling the Graphite Stack of RBMK-1000 Reactors Taking into Account Certain Features of Graphite Microstructure. MPEI Vestnik. 2018;3:29—36. (in Russian). DOI: 10.24160/1993-6982-2018-3-29-36.
Published
2018-06-01
Section
Power engineering (05.14.00)