Spectral Analysis of Signals Using a Spin-Transfer Nanooscillator in the Phase-Locking Regime
Abstract
The spectral analysis of signals with the use of a spin-transfer nanooscillator operating in the external phase-locking regime is investigated. The study is motivated by investigations carried out in the field of spintronics, spin-transfer nanooscillators (STNO) and neuromorphic computing. Currently, active research is underway on developing miniature oscillation sources in the microwave band. STNOs, which have dimensions of tens and hundreds of nanometers and retuned in the range of fractions to tens of gigahertz are among the promising candidates for this role. The main disadvantage of such generators is the low output power of generated oscillations, making a few hundred nanowatt. One possible way to increase the power of STNO-based devices is to combine them into ensembles in order to synchronize and add their capacities. Various mechanisms of external and mutual synchronization of STNO are known, for example, by means of phase-locked circuits. Despite a large number of works in the field of STNO synchronization, many problems have not been solved as yet. It is proposed to use an STNO as a detector of microwave signals operating in the phase locking regime. This would make it possible to construct a spectrum analyzer operating at low power of the input (analyzed) signal (as low as a few picowatt). The main operating modes of this analyzer have been numerically simulated, and its main operating characteristics (the limiting sensitivity and maximum scanning rate) have been determined. The mathematical model of an STNO-based synthesizing device has been investigated, and its main performance characteristics have analytically been determined using the oscillation theory methods, which have been compared with the similar parameters obtained using numerical methods. The obtained results can be used in experimental investigations of STNO- based spectrum analyzers and various spintronic devices.
References
2. Safin A.R., Udalov N.N., Kapranov M.V. Mutual Phase Locking of Very Nonidentical Spin Torque Nanooscillators via Spin Wave Interaction // Eur. Phys. J. Appl. Phys. 2014. V. 67. P. 20601.
3. Сафин А.Р., Митрофанов А.А., Удалов Н.Н., Капранов М.В. Синхронизация спин-трансферных наноосцилляторов // Вестник МЭИ. 2015. № 1. С. 96—100.
4. Mitrofanov A.A., Safin A.R., Udalov N.N., Kapranov M.V. Theory of Spin-torque Nano-oscillator-based Phase-locked Loop // J. Appl. Phys. 2017. V. 122 P. 123903.
5. Prokopenko O.V. e. a. Spin-torque Microwave Detectors. Springer, 2013. Pp. 143—161.
6. Kreissig M. e. a. Vortex Spin-torque Oscillator Stabilized by Phase Locked Loop Using Integrated Circuits // AIP Advances. 2017. V. 7. P. 056653.
7. Awad A. e. a. Long-range Mutual Synchronization of Spin Hall Nano-oscillators // Nat. Phys. 2016. V. 14. Pp. 1—9.
8. Louis S. e. a. Low Power Microwave Signal Detection with a Spin-torque Nano-oscillator in the Active Self-oscillating Regime // Trans. on Magn. Intermag. 2017. Pp. 1—5.
9. Сафин А.Р., Удалов Н.Н., Бичурин М.И., Петров Р.В., Татаренко А.С. Нагрузочные характеристики спин-трансферного наноосциллятора // Письма в ЖТФ. 2017. № 6. С. 56—63.
10. Дворников А.А., Уткин Г.М. Автогенераторы в радиотехнике. М.: Радио и связь, 1991.
11. Tamaru S. е. а. // Measurement of Shot Noise in Magnetic Tunnel Junction and its Utilization for Accurate System Calibration // Journ. of Appl. Phys. 2017. V. 122. P. 193901.
12. Lebrun R. e. a. Nonlinear Behavior and Mode Coupling in Spin-transfer Nano-oscillators // Phys. Rev. Appl. 2014. V. 6. P. 061001.
13. Lebrun R. e. a. Mutual Synchronization of Spin Torque Nanooscillators Through a Long-range and Tunable Electrical Coupling Scheme // Nat. Comm. 2017. V. 8. P. 15825.
14. Sharma A.A., Bain J.A., Weldon J.A. Phase Coupling and Control of Oxide-based Oscillators for Neuromorphic Computing // IEEE J. Exploratory Solidstate Computational Devices and Circuits. 2015. V. 1. Pp. 58—66.
15. Mizrahi A. e. a. Magnetic Stochastic Oscillators: Noise-induced Synchronization to Underthreshold Excitation and Comprehensive Compact Model // IEEE Trans. Magnetics. 2015. V. 51. Pp. 1—4.
16. Rippard W., Pufall M., Kos A. Time Required to Injection-lock Spin Torque Nanoscale Oscillators // Appl. Phys. Lett. 2013. V. 103. P. 182403.
17. Kumar D. e. a. Coherent Microwave Generation by Spintronic Feedback Oscillator // Sci. Rep. 2016. V. 6. P. 30747.
18. Tamaru S., Kubota H., Yakushiji K., Yuasa S., Fukushima A. Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop // Sci. Rep. 2015. V. 5. P. 18134.
19. Dixit D., Konishi K., Tomy C.V., Suzuki Y., Tulapurkar A.A. Spintroics Oscillator Based on Magnetic Field Feedback // Appl. Phy. Lett. 2012. V. 101. P. 122410.
20. Choi H.S. e. a. // Spin Nano-oscillator Based Wireless Communication // Sci. Rep. 2014. V. 4. P. 5486.
---
Для цитирования: Сафин А.Р., Митрофанов А.А., Удалов Н.Н., Капранов М.В. Спектральный анализ сигналов с использованием спин-трансферного наноосциллятора в режиме синхронизации // Вестник МЭИ. 2018. № 5. С. 166—171. DOI: 10.24160/1993-6982-2018-5-166-171.
#
1. Slavin A., Tiberkevich V. Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current. IEEE Trans. Mag. 2009;45:1875—1918.
2. Safin A.R., Udalov N.N., Kapranov M.V. Mutual Phase Locking of Very Nonidentical Spin Torque Nanooscillators via Spin Wave Interaction. Eur. Phys. J. Appl. Phys. 2014;67:20601.
3. Safin A.R., Mitrofanov A.A., Udalov N.N., Kapranov M.V. Sinhronizaciya Spin-transfernyh Nanooscillyatorov. Vestnik MPEI. 2015;1:96—100. (in Russian).
4. Mitrofanov A.A., Safin A.R., Udalov N.N., Kapranov M.V. Theory of Spin-torque Nano-oscillatorbased Phase-locked Loop. J. Appl. Phys. 2017;122:123903.
5. Prokopenko O.V. e. a. Spin-torque Microwave Detectors. Springer, 2013:143—161.
6. Kreissig M. e. a. Vortex Spin-torque Oscillator Stabilized by Phase Locked Loop Using Integrated Circuits. AIP Advances. 2017;7:056653.
7. Awad A. e. a. Long-range Mutual Synchronization of Spin Hall Nano-oscillators. Nat. Phys. 2016;14:1—9.
8. Louis S. e. a. Low Power Microwave Signal Detection with a Spin-torque Nano-oscillator in the Active Self-oscillating Regime. Trans. on Magn. Intermag. 2017:1—5.
9. Safin A.R., Udalov N.N., Bichurin M.I., Petrov R.V., Tatarenko A.S. Nagruzochnye Harakteristiki Spin-transfernogo Nanooscillyatora. Pis'ma v ZHTF. 2017; 6:56—63. (in Russian).
10. Dvornikov A.A., Utkin G.M. Avtogeneratory v Radiotekhnike. M.: Radio i Svyaz', 1991. (in Russian).
11. Tamaru S. е. а. Measurement of Shot Noise in Magnetic Tunnel Junction and its Utilization for Accurate System Calibration. Journ. of Appl. Phys. 2017;122:193901.
12. Lebrun R. e. a. Nonlinear Behavior and Mode Coupling in Spin-transfer Nano-oscillators. Phys. Rev. Appl. 2014;6:061001.
13. Lebrun R. e. a. Mutual Synchronization of Spin Torque Nanooscillators Through a Long-range and Tunable Electrical Coupling Scheme. Nat. Comm. 2017;8:15825.
14. Sharma A.A., Bain J.A., Weldon J.A. Phase Coupling and Control of Oxide-based Oscillators for Neuromorphic Computing. IEEE J. Exploratory Solidstate Computational Devices and Circuits. 2015;1:58—66.
15. Mizrahi A. e. a. Magnetic Stochastic Oscillators: Noise-induced Synchronization to Underthreshold Excitation and Comprehensive Compact Model. IEEE Trans. Magnetics. 2015;51:1—4.
16. Rippard W., Pufall M., Kos A. Time Required to Injection-lock Spin Torque Nanoscale Oscillators. Appl. Phys. Lett. 2013;103:182403.
17. Kumar D. e. a. Coherent Microwave Generation by Spintronic Feedback Oscillator. Sci. Rep. 2016;6:30747.
18. Tamaru S., Kubota H., Yakushiji K., Yuasa S., Fukushima A. Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop. Sci. Rep. 2015;5:18134.
19. Dixit D., Konishi K., Tomy C.V., Suzuki Y., Tulapurkar A.A. Spintroics Oscillator Based on Magnetic Field Feedback. Appl. Phy. Lett. 2012;101:122410.
20. Choi H.S. e. a.. Spin Nano-oscillator Based Wireless Communication. Sci. Rep. 2014;4:5486.
---
For citation: Safin A.R., Mitrofanov A.A., Udalov N.N., Kapranov M.V. Spectral Analysis of Signals Using a Spin-Transfer Nanooscillator in the Phase-Locking Regime. MPEI Vestnik. 2018;5:166—171. (in Russian). DOI: 10.24160/1993-6982-2018-5-166-171.