Acousto-Optic Filtration of Light for Non-Destructive Testing Applications

  • Александр [Aleksandr] Сергеевич [S.] Мачихин [Machikhin]
  • Витольд [Vitold] Эдуардович [E.] Пожар [Pozhar]
Keywords: spectral imaging, acousto-optic interaction, spectral filtration, non-destructive testing

Abstract

Optical methods are among the most effective ones for non-destructive testing (NDT) of various technical objects. An approach based on using the acousto-optic (AO) effect, i.e., light diffraction on sound, significantly expands the possibilities of conventional visual measurement examination methods. The possibilities of developing new multimodal information and measurement systems for NDT based on AO filtration of light are analyzed. It is shown that the use of such systems opens the possibility to implement various analytical methods on a unified component and methodological basis. Possible practical applications of systems constructed on the basis of tunable AO filters for different NDT tasks are described. A spectral imaging module attachable to conventional rigid and flexible optical endoscopes is presented. The developed module, the operation of which is based on subjecting light to double monochromatization, ensures the possibility of arbitrary spectral addressing in the visible range of wavelengths and high-precision measurement of reflection spectra at arbitrary points. A device for 3D imaging of objects in arbitrary spectral intervals is described. Its operation principle is based on simultaneous AO filtration of two stereoscopic light beams carrying images. Such a device may be produced as a self-contained module and is promising for many applications. Basic schematic arrangements of optical coherence microscopy are presented. Central to the proposed technique are AO filtration of light beams in the Michelson interferometer’s receiving channel and multispectral digital holographic microscopy based on AO filtration of wideband radiation in the Mach−Zehnder interferometer. In comparison with the known solutions, the suggested approach offers the possibility to obtain a larger number of spectral channels, better spectral contrast, lower sensitivity to external flares, and more stable operation.

Information about authors

Александр [Aleksandr] Сергеевич [S.] Мачихин [Machikhin]

Science degree:

Ph.D. (Phys.-Math.)

Workplace

Electrical Engineering and Introscopy Dept., NRU MPEI; Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences

Occupation

Assistant Professor; Leading Researcher

Витольд [Vitold] Эдуардович [E.] Пожар [Pozhar]

Science degree:

Dr.Sci. (Phys.-Math.)

Workplace

Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences

Occupation

Head of Department

References

1. Mix P. Introduction to Nondestructive Testing: A Training Guide. John Wiley & Sons, 2005.

2. Клюев В.В., Соснин Ф.Р., Ковалев А.В. Неразрушающий контроль и техническая диагностика. М.: Машиностроение, 2003.

3. Zhu Y., Tian G., Lu R., Zhang H. A Review of Optical NDT Technologies // Sensors. 2011. V. 11. Pp. 7773—7798.

4. Goutzulis A, Rape D. Design and Fabrication of Acousto-optic Devices. N.-Y.: Dekker, 1994.

5. Молчанов В.Я. и др. Теория и практика современной акустооптики. М.: МИСИС, 2015.

6. Магдич Л.Н. Аппаратная функция акустооптического фильтра при перестройке частоты // Оптика и спектроскопия. 1980. Т. 49. №. 2. С. 387—390.

7. Пожар В.Э., Пустовойт В.И. Акустооптические спектральные технологии // Известия РАН. Серия «Физическая». 2015. Т. 79. № 10. С. 1375—1380.

8. Фадеев А.В., Пожар В.Э. Построение адаптивных спектроанализаторов на основе акустооптических спектрометров // Оптический журнал. 2013. Т. 80. № 7. С. 50—57.

9. Chang C. Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Springer Science & Business Media, 2003.

10. Hagen N., Kudenov M.W. Review of Snapshot Spectral Imaging Technologies // Optical Eng. 2013. V. 52 (9). Pp. 090901—090901.

11. Stratis D. е. а. Comparison of Acousto-optic and Liquid Crystal Tunable Filters for Laser-Induced Breakdown Spectroscopy // Appl. Spectroscopy. 2001. V. 55 (8). Pр. 999—1004.

12. Bubion L., Miller P., Hayden A. Comparison of AOTF, Grating, and FTS Imaging Spectrometers for Hyperspectral Remote Sensing Applications // Proc. SPIE. 2000. V. 4049. Pр. 239—249.

13. Denes L., Gottlieb M., Kaminsky B., Metes P. AOTF Polarization Difference Imaging // Proc. SPIE. 1999. V. 3584. Pp. 106—115.

14. Balakshy V.I., Kostyuk D.E. Acousto-optic Image Processing // Appl. Optics. 2009. V. 48. No. 7. Pp. 24—32.

15. Котов В.М. Акустооптика. Брэгговская дифракция многоцветного излучения. М.: Янус-К, 2016.

16. Voloshinov V.В., Molchanov V.Ya., Mosquera J.C. Spectral and Polarization Analysis of Optical Images by Means of Acousto-optics // Optics & Laser Technology. 1996. V. 28. No. 2. Pp. 119—127.

17. Molchanov V.Ya. e. a. Acousto-optical Imaging Spectropolarimetric Devices: New Opportunities and Developments // Proc. SPIE. 2014. V. 9147. Pp. 91472—92480.

18. Huth J.F. History and Background of Acoustooptical Tunable Filters (AOTFs) for Imagery Intelligence Applications // Proc. SPIE. 1999. V. 3584. Pp. 136—141.

19. Мачихин А.С. и др. Акустооптический модуль для визуального и спектрометрического эндоскопиче ского контроля // Труды НПО Энергомаш им. академика В.П. Глушко. 2016. Т. 33. С. 227—238.

20. Мачихин А.С. и др. Акустооптический видеоспектрометр для измерения пространственного распределения температуры микрообъектов // Приборы и техника эксперимента. 2017. № 3. С. 100—105.

21. Zhang C., Zhang Z., Wang H., Yang Y. Spectral Resolution Enhancement of Acousto-optic Tunable Filter by Double-filtering // Optics Express. 2008. V. 16 (14). Pp. 10234—10239.

22. Machikhin A.S., Batshev V.I, Pozhar V.E. Aberration Analysis of AOTF-based Spectral Imaging Systems // J. Opt. Soc. Am. A. 2017. V. 34 (7). Pp. 1109—1113.

23 Епихин В.М. и др. Акустооптические спектрометры изображения видимого и ближнего ИК диапазонов // Физические основы приборостроения. 2013. Т. 2. № 4 (9). С. 116—125.

24. Machikhin A.S, Pozhar V.E. Single-AOTF-based Stereoscopic 3-Dimensional Spectral Imaging Systems Based on a Single Acousto-optical Tunable Filter // J. Phys.: Conf. Ser. 2015. V. 661. P. 012041.

25. Мачихин А.С., Батшев В.И., Пожар В.Э., Мазур М.М. Акустооптический стереоскопический спектрометр полного поля для восстановления объемной структуры объектов в произвольных спектральных интервалах // Компьютерная оптика. 2016. № 6. С. 871—877.

26. Forsyth D.A., Ponce J. Computer Vision: a Modern Approach. Upper Saddle River: Prentice-Hall, 2012.

27. Drexler W., Fujimoto J. Optical Coherence Tomography. Technology and Applications. Springer, 2008.

28. Dubois A. Handbook of Full-field Optical Coherence Microscopy: Technology and Applications. CRC Press, 2016.

29. Мачихин А.С., Бурмак Л.И., Пожар В.Э. Расчет интерференционной картины, формируемой переносящими изображения световыми пучками после дифракции на акустической волне в одноосном кристалле // Компьютерная оптика. 2017. Т. 41. № 2. С. 169—174.

30. Machikhin A.S. е. а. Acousto-optical Tunable Filter for Combined Wideband, Spectral and Optical Coherence Microscopy // Appl. Optics. 2015. V. 54 (25). Pр. 7508—7513.

31. Мачихин А.С., Бурмак Л.И., Пожар В.Э. Визуализация фазовой структуры оптически прозрачных объектов на основе акустооптической фильтрации интерференционных изображений // Приборы и техника эксперимента. 2016. № 6. C. 57—61.

32. Machikhin A.S., Polschikova O.V., Ramazanova A.G., Pozhar V.E. Multi-spectral Quantitative Phase Imaging Based on Filtration of Light via Ultrasonic Wave // J. Optics. 2017. V. 19. P. 075301.
---
Для цитирования: Мачихин А.С., Пожар В.Э. Применение акустооптической фильтрации света для решения задач неразрушающего контроля // Вестник МЭИ. 2018. № 6. С. 120—127. DOI: 10.24160/1993-6982-2018-6-120-127.
#
1. Mix P. Introduction to Nondestructive Testing: A Training Guide. John Wiley & Sons, 2005.

2. Klyuev V.V., Sosnin F.R., Kovalev A.V. Nerazrushayushchiy Kontrol' i Tekhnicheskaya Diagnostika. M.:

Mashinostroenie, 2003. (in Russian).

3. Zhu Y., Tian G., Lu R., Zhang H. A Review of Optical NDT Technologies. Sensors. 2011;11:7773—7798.

4. Goutzulis A, Rape D. Design and Fabrication of Acousto-optic Devices. N.-Y.: Dekker, 1994.

5. Molchanov V.Yа. i dr. Teoriya i Praktika Sovremennoy Akustooptiki. M.: MISIS, 2015. (in Russian).

6. Magdich L.N. Apparatnaya Funktsiya Akustoopticheskogo Fil'tra pri Perestroyke Chastoty. Optika i Spektroskopiya. 1980;49; 2:387—390. (in Russian).

7. Pozhar V.E., Pustovoyt V.I. Akustoopticheskie Spektral'nye Tekhnologii. Izvestiya RAN. Seriya «Fizicheskaya». 2015;79;10:1375—1380. (in Russian).

8. Fadeev A.V., Pozhar V.E. Postroenie Adaptivnyh Spektroanalizatorov na Osnove Akustoopticheskih Spektrometrov. Opticheskiy Zhurnal. 2013;80;7:50—57. (in Russian).

9. Chang C. Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Springer Science & Business Media, 2003.

10. Hagen N., Kudenov M.W. Review of Snapshot Spectral Imaging Technologies. Optical Eng. 2013;52 (9):090901—090901.

11. Stratis D. е. а. Comparison of Acousto-optic and Liquid Crystal Tunable Filters for Laser-Induced Breakdown Spectroscopy. Appl. Spectroscopy. 2001;55 (8):999—1004.

12. Bubion L., Miller P., Hayden A. Comparison of AOTF, Grating, and FTS Imaging Spectrometers for Hyperspectral Remote Sensing Applications. Proc. SPIE. 2000;4049:239—249.

13. Denes L., Gottlieb M., Kaminsky B., Metes P. AOTF Polarization Difference Imaging. Proc. SPIE. 1999;3584:106—115.

14. Balakshy V.I., Kostyuk D.E. Acousto-optic Image Processing. Appl. Optics. 2009;48;7:24—32.

15. Kotov V.M. Akustooptika. Breggovskaya Difraktsiya Mnogotsvetnogo Izlucheniya. M.: Yanus-K, 2016. (in Russian).

16. Voloshinov V.В., Molchanov V.Ya., Mosquera J.C. Spectral and Polarization Analysis of Optical Images by Means of Acousto-optics. Optics & Laser Technology. 1996;28. No. 2:119—127.

17. Molchanov V.Ya. e. a. Acousto-optical Imaging Spectropolarimetric Devices: New Opportunities and Developments. Proc. SPIE. 2014;9147:91472—92480.

18. Huth J.F. History and Background of Acoustooptical Tunable Filters (AOTFs) for Imagery Intelligence Applications. Proc. SPIE. 1999;3584:136—141.

19. Machihin A.S. i dr. Akustoopticheskiy Modul' dlya Vizual'nogo i Spektrometricheskogo Endoskopicheskogo Kontrolya. Trudy NPO Energomash im. Akademika V.P. Glushko. 2016;33:227—238. (in Russian).

20. Machihin A.S. i dr. Akustoopticheskiy Videospektrometr dlya Izmereniya Prostranstvennogo Raspredeleniya Temperatury Mikroob′ektov. Pribory i tekhnika eksperimenta. 2017;3:100—105. (in Russian).

21. Zhang C., Zhang Z., Wang H., Yang Y. Spectral Resolution Enhancement of Acousto-optic Tunable Filter by Double-filtering. Optics Express. 2008;16 (14):10234—10239.

22. Machikhin A.S., Batshev V.I, Pozhar V.E. Aberration Analysis of AOTF-based Spectral Imaging Systems. J. Opt. Soc. Am. A. 2017;34 (7):1109—1113.

23 Epihin V.M. i dr. Akustoopticheskie Spektrometry Izobrazheniya Vidimogo i Blizhnego IK Diapazonov.. Fizicheskie Osnovy Priborostroeniya. 2013;2;4 (9): 116—125. (in Russian).

24. Machikhin A.S, Pozhar V.E. Single-AOTF-based Stereoscopic 3-Dimensional Spectral Imaging Systems Based on a Single Acousto-optical Tunable Filter. J. Phys.: Conf. Ser. 2015;661:012041.

25. Machihin A.S., Batshev V.I., Pozhar V.E., Mazur M.M. Akustoopticheskiy Stereoskopicheskiy Spektrometr Polnogo Polya dlya Vosstanovleniya Ob′emnoy Struktury Ob′ektov v Proizvol'nyh Spektral'nyh Intervalah. Komp'yuternaya Optika. 2016;6:871—877. (in Russian).

26. Forsyth D.A., Ponce J. Computer Vision: a Modern Approach. Upper Saddle River: Prentice-Hall, 2012.

27. Drexler W., Fujimoto J. Optical Coherence Tomography. Technology and Applications. Springer, 2008.

28. Dubois A. Handbook of Full-field Optical Coherence Microscopy: Technology and Applications. CRC Press, 2016.

29. Machihin A.S., Burmak L.I., Pozhar V.E. Raschet Interferentsionnoy Kartiny, Formiruemoy Perenosyashchimi Izobrazheniya Svetovymi Puchkami Posle Difraktsii na Akusticheskoy Volne v Odnoosnom Kristalle. Komp'yuternaya Optika. 2017;41;2:169—174. (in Russian).

30. Machikhin A.S. е. а. Acousto-optical Tunable Filter for Combined Wideband, Spectral and Optical Coherence Microscopy. Appl. Optics. 2015;54 (25):7508—7513.

31. Machihin A.S., Burmak L.I., Pozhar V.E. Vizualizatsiya Fazovoy Struktury Opticheski Prozrachnyh Ob′ektov na Osnove Akustoopticheskoy Fil'tratsii Interferentsionnyh Izobrazheniy. Pribory I Tekhnika Eksperimenta. 2016;6:57—61. (in Russian).

32. Machikhin A.S., Polschikova O.V., Ramazanova A.G., Pozhar V.E. Multi-spectral Quantitative Phase Imaging Based on Filtration of Light via Ultrasonic Wave. J. Optics. 2017;19:075301.
---
For citation: Machikhin A.S., Pozhar V.E. Acousto-Optic Filtration of Light for Non-Destructive Testing Applications. MPEI Vestnik. 2018;6:120—127. (in Russian). DOI: 10.24160/1993-6982-2018-6-120-127.
Published
2018-12-01
Section
Devices and methods of monitoring of an environment, substances, materials an