Reflector Image Restoration Using the Compressive Sensing Method from the Echo Signals Measured by an Antenna Array
Abstract
To obtain a reflector image from the echo signals measured by an antenna array, the combined synthetic aperture focusing technique (C-SAFT) method is used. To do so, it is necessary to record the echo signals р for all emitter-receiver pairs of antenna array elements (the dual scanning mode). That is, for an antenna array containing 32 elements, 1024 echo signals should be measured. For restoring the image of reflectors without loss of quality for the number of data рCS fewer than the original set of echo signals р, it is proposed to use the method of compressed measurements or recognition with compression, commonly known as the compressive sensing (CS) method. In addition to reducing the amount of data, the CS method improves the image quality due to increasing its resolution. There are several implementations of this algorithm, the application of which depends on the signal parameters, such as noise and sparsity of the image being restored. For comparison purposes, the reflector images were restored from a part of echo signals using the nonlinear method of maximal entropy (ME). The reflector images restored from the incomplete set of echo signals obtained in numerical and model experiments according to the C-SAFT, ME, and CS methods are presented. In the numerical experiment, the use of the CS method made it possible to resolve, by means of an eight-element array with a 2-mm pitch, 12 point reflectors with reflection coefficients equal to 0.1, 0.5, and 1.0 at a distance of about 12 mm from the antenna array that were located at the corners of three squares with a side of 1 mm (1.18 of the wavelength). The images of the point reflectors took one pixel with the size 0.1×0.1 mm with retaining the specified values of the reflection coefficient ε. Compared with the image obtained using the C-SAFT method, the resolution has been improved by more a factor of 5. Moreover, the amount of data рCS was reduced by 88 times compared with its original value р. In the model experiment, the use of the CS method made it possible to restore the image of reflectors with the amount of data 13 times smaller than its original value р. The CS image was found to be of better quality than the C-SAFT image and commensurable with the ME image. The longitudinal and frontal resolutions of the CS- and ME images have increased by more than a factor of 3 compared with the C-SAFT image.
References
2. Воронков В.А. и др. О применимости технологии антенных решеток в решении задач ультразвукового контроля опасных производственных объектов // В мире неразрушающего контроля. 2011. № 1. С. 64—70.
3. Базулин Е.Г. Сравнение систем для ультразвукового неразрушающего контроля, использующих антенные решетки или фазированные антенные решетки // Дефектоскопия. 2013. № 7. С. 51—75.
4. Парфенов В.И., Голованов Д.Ю. Обнаружение дискретных разреженных сигналов с частотой дискретизации, не превышающей частоту Найквиста // Журнал радиоэлектроники. 2017. № 6. [Электрон. ресурс] http://jre.cplire.ru/jre/jun17/1/text.pdf (дата обращения 23.02.2018).
5. Высокочастотный ультразвуковой томограф «А1550 IntroVisor» [Электрон. ресурс] http://acsys. ru/production/?type_id=16&subtype_id=7&product_ id=106 (дата обращения 23.02.2018).
6. Базулин Е.Г. Повышение скорости регистрации ультразвуковых эхосигналов для режима двойного сканирования // Дефектоскопия. 2015. № 2. С. 27—44.
7. Базулин А.Е., Базулин Е.Г. Деконволюция сложных эхосигналов методом максимальной энтропии в ультразвуковом неразрушающем контроле // Акустический журнал. 2009. № 6. С. 772—783.
8. Граничин О.Н. Рандомизация измерений и l 1 оптимизация // Стохастическая оптимизация в информатике. 2009. № 5. С. 3—23.
9. Donoho D.L. Compressed Sensing // IEEE Trans. Inform. Theory. 2006. Pр. 1289—1306.
10. Базулин Е.Г. Разработка системы эксплуатационного ультразвукового неразрушающего контроля повышенной информативности с применением антенных решеток: Автореф. дисс. ... доктора техн. наук: М.: МГТУ им. Н.Э. Баумана, 2014.
11. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986.
12. Kullback S. Information Theory and Statistics. N.-Y.: Dover Publ, 1968.
13. Guarneri G.A. е. а. A Sparse Reconstruction Algorithm for Ultrasonic Images in Nondestructive Testing // Sensor. 2015. V. 15. Pp. 9324—9343.
14. Минаков Е.И., Серегин П.С. Сравнительный анализ методов параллельной реконструкции изображений магнитно-резонансной томографии // Цифровая обработка сигналов. 2012. № 3. С. 23—28.
15. Provost J., Lesage F. The Application of Compressed Sensing for Photo-acoustic Tomography // IEEE Trans. Med. Imag. 2009. V. 28. No. 4. Pp. 585—594.
16. Foucart S., Rauhut H. A Mathematical Introduction to Compressive Sensing. Basel: Birkhauser, 2013.
17. Candes E., Romberg J., Tao T. Stable Signal Recovery from Incomplete and Inaccurate Measurements //roc. Submitted to Communications on Pure and Appl. Math. Pasadena, 2005. Pp. 1—15.
18. l 1 -magic. Recovery of Sparse Signals via Convex Programming [Электрон. ресурс] https://statweb.stanford. edu/~candes/l1magic/ (дата обращения 23.02.2018).
---
Для цитирования: Базулин Е.Г., Соколов Д.М. Восстановление изображения отражателей методом распознавания со сжатием по эхосигналам, измеренным антенной решеткой // Вестник МЭИ. 2018. № 6. С. 128—135. DOI: 10.24160/1993-6982-2018-6-128-135.
#
1. Advances in Phased Array Ultrasonic Technology Applications [Elektron. Resurs] http://www.olympus-ims. com/en/books/ (Data Obrashcheniya 23.02.2018).
2. Voronkov V.A. i dr. O Primenimosti Tekhnologii Antennyh Reshetok v Reshenii Zadach Ul'trazvukovogo Kontrolya Opasnyh Proizvodstvennyh Ob′ektov. V Mire Nerazrushayushchego Kontrolya. 2011;1:64—70. (in Russian).
3. Bazulin E.G. Sravnenie Sistem dlya Ul'trazvukovogo Nerazrushayushchego Kontrolya, Ispol'zuyushchih Antennye Reshetki ili Fazirovannye Antennye Reshetki. Defektoskopiya. 2013;7:51—75. (in Russian).
4. Parfenov V.I., Golovanov D.Yu. Obnaruzhenie Diskretnyh Razrezhennyh Signalov s Chastotoy Diskretizatsii, ne Prevyshayushchey Chastotu Naykvista. Zhurnal Radio elektroniki. 2017;6. [Elektron. Resurs] http://jre.cplire. ru/jre/jun17/1/text.pdf (Data Obrashcheniya 23.02.2018). (in Russian).
5. Vysokochastotnyy Ul'trazvukovoy tomograf «А1550 IntroVisor» [Elektron. Resurs] http://acsys.ru/ production/?type_id=16&subtype_id=7&product_id=106 (Data Obrashcheniya 23.02.2018). (in Russian).
6. Bazulin E.G. Povyshenie Skorosti Registratsii Ul'trazvukovyh Ekhosignalov dlya Rezhima Dvoynogo Skanirovaniya. Defektoskopiya. 2015;2:27—44. (in Russian).
7. Bazulin A.E., Bazulin E.G. DekonvolyutsiyaSlozhnyh Ekhosignalov Metodom Maksimal'noy Entropii v Ul'trazvukovom Nerazrushayushchem Kontrole. Akusticheskiy Zhurnal. 2009;6:772—783. (in Russian).
8. Granichin O.N. Randomizatsiya Izmereniy i l 1 -optimizatsiya. Stohasticheskaya Optimizatsiya v Informatike. 2009;5:3—23. (in Russian).
9. Donoho D.L. Compressed Sensing. IEEE Trans. Inform. Theory. 2006:1289—1306.
10. Bazulin E.G. Razrabotka Sistemy Ekspluatatsionnogo Ul'trazvukovogo Nerazrushayushchego Kontrolya Povyshennoy Informativnosti S Primeneniem Antennyh Reshetok: Avtoref. Diss. ... Doktora Tekhn. Nauk: M.: MGTU im. N.E. Baumana, 2014. (in Russian).
11. Tihonov A.N., Arsenin V.Ya. Metody Resheniya Nekorrektnyh Zadach. M.: Nauka, 1986. (in Russian).
12. Kullbac S. Information Theory and Statistics. N.-Y.: Dover Publ, 1968.
13. Guarneri G.A. e. a. A Sparse Reconstruction Algorithm for Ultrasonic Images in Nondestructive Testing. Sensor. 2015;15:9324—9343.
14. Minakov E.I., Seregin P.S. Sravnitel'nyy Analiz Metodov Parallel'noy Rekonstruktsii Izobrazheniy Magnitno-rezonansnoy Tomografii. Tsifrovaya Obrabotka Signalov. 2012;3:23—28. (in Russian).
15. Provost J., Lesage F. The Application of Compressed Sensing for Photo-acoustic Tomography. IEEE Trans. Med. Imag. 2009;28;4:585—594.
16. Foucart S., Rauhut H. A Mathematical Introduction to Compressive Sensing. Basel: Birkhauser, 2013.
17. Candes E., Romberg J., Tao T. Stable Signal Recovery from Incomplete and Inaccurate Measurements. Proc. Submitted to Communications on Pure and Appl. Math. Pasadena, 2005:1—15.
18. l 1 -magic. Recovery of Sparse Signals via Convex Programming [Elektron. Resurs] https://statweb.stanford. edu/~candes/l1magic/ (Data Obrashcheniya 23.02.2018).
---
For citation: Bazulin E.G., Sokolov D.M. Reflector Image Restoration Using the Compressive Sensing Method from the Echo Signals Measured by an Antenna Array. MPEI Vestnik. 2018;6:128—135. (in Russian). DOI: 10.24160/1993-6982-2018-6-128-135.