A System of Coaxial Disk Dielectric Resonators with Azimuthal Oscillations
Abstract
The own q-factor of a disk dielectric resonator (DDR) with azimuthal oscillations is determined by the radiation losses from the disk surface and dissipation in the dielectric. A change of disk parameters reducing the influence of one of these factors invariably causes an increased influence of the other parameter, whereas the own q-factor does not exceed 1/tgδ of the disk material. In a resonant structure made in the form of two coaxially arranged disks, the q-factor may be several times higher than this value. That the effect is in principle possible is obvious: in a multilayer structure with different dissipation in layers, it is possible to localize the electromagnetic field in an area with low dissipation. Preliminary experimental studies have shown that the effect does take place and depends on the choice of the working type of azimuthal oscillations and system parameters. The aim of this study is to justify the choice of the type of azimuthal oscillations and the region of structural parameters with which the highest levels of the own q-factor are obtained. For calculating the characteristics of azimuthal waves of the HE- and EH types producing oscillations in the DDR system, the phenomenological method of effective dielectric permeability was used. A system of distributed coupled planar dielectric waveguides and a dielectric cylinder were considered as the method’s first and second models, respectively. The results from an analysis of dispersion and energy characteristics of the own types of azimuthal resonators have shown that the highest levels of own q-factors are characteristic of an even EH-type and can be several times higher than 1/tgδ.
References
2. Добромыслов В.С. Резонансные СВЧустройства. М.: Изд-во МЭИ, 1995.
3. Брагинский В.Б., Митрофанов В.П. Панов В.И. Системы с малой диссипацией. М.: Наука, 1981.
4. Egorov V.N. e. a. Dielectric Constant, Loss Tangent, and Surface Resistance of PCB Materials at K-band Frequencies // IEEE Trans. Microwave Theory and Techn. Soc. 2005. V. 53. No. 2. Pp. 627—635.
5. Son B.I., Jeong H.C., Yeom K.W. Design of a Low Phase Noise Voltage Tuned DRO based on Improved Dielectric Resonator Coupling Structure // Proc. APMC. Kaohsiung, 2012. Pp. 1121—1123.
6. Zhou L., Yin W.Y., Wang J., Wu L.S. Dielectric Resonators with High Q-factor for Tunable Low Phase Noise Oscillators // IEEE Trans. CPMT. 2013. V. 3. No. 6. Pp. 1008—1015.
7. Yazdani M., Bates D., Murphy L. The Design and Fabrication of a Compact Low Phase Noise Dielectric Cavity Resonator Oscillator // Proc. EuMA Conf. Rome, 2014. Pp. 719—722.
8. Tobar M.E. e. a. Analysis of the Rutile-ring Method of Frequency-temperature Compensating a High-Q Whispering Gallery Sapphire Resonator // IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control. 2001. V. 48. Pp. 812—820.
9. Раевский Г.П. Система соосных открытых диэлектрических резонаторов // Проектирование РЭУ на ДВ и ДР: Тез. докл. Всесоюзн. науч.-техн. конф. Тбилиси: Изд-во ТбГУ, 1988.
10. Голубничая Г.В., Кириченко А.Я., Кривенко Е.В., Луценко В.И. Влияние величины зазора между дисками на добротность диэлектрического пластинчатого резонатора // Письма в ЖТФ. 2015. Т. 41. Вып. 6. С. 50—57.
11. Добромыслов В. С., Береза А.Е. Особенности собственных колебаний пластинчатых диэлектрических резонаторов // Труды МЭИ. 1984. № 48. С. 38—44.
12. Взятышев В.Ф., Рябов Б.И., Рожков Г.Д. Распределенная связь и собственные волны системы ДВ. Т. 3. Отчет по НИР «Аксойд-МВО». М.: МЭИ, 1968.
13. Колуков В.В. Проектирование электронных систем на основе синтеза и принятия решений // Электромагнитные волны и электронные системы. 2006. Т. 11. № 8. С. 45—48.
14. Knox R.M., Toulios P.P. Integrated Circuits for Millimeter Through Optical Frequency Range // Proc. Symp. Submillimeter waves. Brooklyn: Polytech. Press of Polytech. Inst. of Brooklyn, 1970. Pp. 497—516.
---
Для цитирования: Раевский Г.П., Колуков В.В. Система соосных дисковых диэлектрических резонаторов с азимутальными колебаниями // Вестник МЭИ. 2018. № 6. С. 142—146. DOI: 10.24160/1993-6982-2018-6-142-146.
#
1. Dobromyslov V.S., Vzyatyshev V.F. Dielektricheskie Rezonatory s Volnami Shepchushchey Galerei. Trudy MPEI. 1973;161:78—84. (in Russian).
2. Dobromyslov V.S. Rezonansnye SVCH-ustroystva. M.: Izd-vo MPEI, 1995. (in Russian).
3. Braginskiy V.B., Mitrofanov V.P. Panov V.I. Sistemy s Maloy Dissipatsiey. M.: Nauka, 1981. (in Russian).
4. Egorov V.N. e. a. Dielectric Constant, Loss Tangent, and Surface Resistance of PCB Materials at K-band Frequencies. IEEE Trans. Microwave Theory and Techn. Soc. 2005;53;2:627—635.
5. Son B.I., Jeong H.C., Yeom K.W. Design of a Low Phase Noise Voltage Tuned DRO based on Improved Dielectric Resonator Coupling Structure. Proc. APMC. Kaohsiung, 2012:1121—1123.
6. Zhou L., Yin W.Y., Wang J., Wu L.S. Dielectric Resonators with High Q-factor for Tunable Low Phase Noise Oscillators. IEEE Trans. CPMT. 2013;3;6:1008—1015.
7. Yazdani M., Bates D., Murphy L. The Design and Fabrication of a Compact Low Phase Noise Dielectric Cavity Resonator Oscillator. Proc. EuMA Conf. Rome, 2014:719—722.
8. Tobar M.E. e. a. Analysis of the Rutile-ring Method of Frequency-temperature Compensating a High-Q Whispering Gallery Sapphire Resonator. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control. 2001;48:812—820.
9. Raevskiy G.P. Sistema Soosnyh Otkrytyh Dielektricheskih Rezonatorov. Proektirovanie REU na DV i DR: Tez. Dokl. Vsesoyuzn. Nauch.-tekhn. Konf. Tbilisi: Izd-vo TbGU, 1988. (in Russian).
10. Golubnichaya G.V., Kirichenko A.Ya., Krivenko E.V., Lutsenko V.I. Vliyanie Velichiny Zazora Mezhdu Diskami na Dobrotnost' Dielektricheskogo Plastinchatogo Rezonatora. Pis'ma v ZHTF. 2015;41;6:50—57. (in Russian).
11. Dobromyslov V.S., Bereza A.E. Osobennosti Sobstvennyh Kolebaniy Plastinchatyh Dielektricheskih Rezonatorov. Trudy MPEI. 1984;48:38—44.(in Russian).
12. Vzyatyshev V.F., Ryabov B.I., Rozhkov G.D. Raspredelennaya Svyaz' i Sobstvennye Volny Sistemy DV. T. 3. Otchet po NIR «Aksoyd-MVO». M.: MPEI, 1968. (in Russian).
13. Kolukov V.V. Proektirovanie Elektronnyh Sistem na Osnove Sinteza i Prinyatiya Resheniy. Elektromagnitnye Volny i Elektronnye Sistemy. 2006;11;8:45—48. (in Russian).
14. Knox R.M., Toulios P.P. Integrated Circuits for Millimeter Through Optical Frequency Range. Proc. Symp. Submillimeter waves. Brooklyn: Polytech. Press of Polytech. Inst. of Brooklyn, 1970:497—516.
---
For citation: Raevsky G.P., Kolukov V.V. A System of Coaxial Disk Dielectric Resonators with Azimuthal Oscillations. MPEI Vestnik. 2018;6:142—146. (in Russian). DOI: 10.24160/1993-6982-2018-6-142-146.