Energy Efficiency of Hydrogen Production and Consumption

  • Сергей [Sergey] Николаевич [N.] Петин [Petin]
Keywords: hydrogen, energy returned on energy invested, natural gas steam-water conversion, electrolysis, transport, hydrogen utilization energy efficiency coefficient

Abstract

The hydrogen production energy efficiency is studied based on the energy profitability coefficient. A model for calculating the energy profitability, known as energy returned on energy invested (EROEI), which can be used in analyzing different production, storage and transport options for a number of hydrogen processing technologies, is proposed. It is shown, based on the performed calculations, that the energy expenditures for hydrogen production make 154—614% of its chemical energy depending on the production, storage and transportation methods, which corresponds to EROEI = 0.651--0.163 and characterizes hydrogen as an energy-unprofitable energy carrier.

A review of the literature is carried out, and possible options of setting up energy-efficient production of hydrogen are presented, which rest on using energy-cheap energy sources. Renewable energy sources, as well as electricity from nuclear and thermal power plants, may become such sources for electrolytic hydrogen production.

Energy-saving hydrogen production lines are presented involving the use of an intensive energy saving methodology, in which the produced hydrogen is accompanied by significant energy-saving effects in combining its production with metallurgical production. Hydrogen production by means of conversion methods using rejected secondary energy resources is analyzed taking as examples the use of converter waste gases from steelmaking production and an oil refinery. The effects from using hydrogen in motor vehicles, in the power industry, and in the metallurgical industry are considered. The hydrogen utilization energy efficiency coefficient is proposed, which is defined as the ratio of saving the specific fuel consumption in using hydrogen to the energy expenditures for its production. An example of the energy efficient use of hydrogen in thermal treatment of steel is presented in which the energy-saving effect of its use is 4.73 times greater than the cost of obtaining it.

Information about author

Сергей [Sergey] Николаевич [N.] Петин [Petin]

Ph.D. (Techn.), Assistant Professor of Energetic of High-Temperature Technologies Dept., NRU MPEI, e-mail: Spetin@yandex.ru

References

1. Радченко Р.В., Мокрушин А.С., Тюльпа В.В. Водород в энергетике. Екатеринбург: Изд-во Уральского ун-та, 2014.
2. Сафронов А.Ф., Голоскоков А.Н. EROEI как показатель эффективности добычи и производства энергоресурсов // Бурение и нефть. 2010. № 12 С. 48—51.
3. Голоскоков А.Н. Критерии сравнения эффективности традиционных и альтернативных энергоресурсов // Нефтегазовое дело. 2011. № 1. С. 285—299.
4. Visalli D. Getting a Decent Return on Your Energy Investment [Электрон. ресурс] http://www.resilience. org/stories/2006-04-12/getting-decent-return-your-energy- investment (дата обращения 08.04.18).
5. Heinberg R. Searching for a Miracle: Net Energy Limits and Fate of Industrial Society. San Francisco: Post Carbon Institute, 2009.
6. Crude Oil Reserves [Электрон. ресурс] www.eia. doe.gov/pub/international/iealf/crudeoilreserves.xls (дата обращения 13.04.18).
7. Hall C.A.S., Balogh S., Murphy D.J.R. What is the Minimum EROI that a Sustainable Society Must Have? // Energies. 2009. V. 2 (1). Pp. 25—47.
8. Hall C. Why EROI Matters (Pt. 1 of 6) // The Oil Drum. 2008. [Электрон. ресурс]: http://www.theoildrum. com/node/3786 (дата обращения 10.04.18).
9. Синяк Ю.В. Перспективы применения водорода в системах децентрализованного электро- и теплоснабжения // Проблемы прогнозирования. 2007. № 3. C. 35—47.
10. Козлов С.И., Фатеев В.Н. Водородная энергетика: современное состояние, проблемы, перспективы. М.: Газпром ВНИИГАЗ, 2009.
11. Установка по производству водорода на основе парового риформинга [Электрон. ресурс] http://www. mahler-ags.com/ru/hydrogen/hydroform-c.htm (дата обращения 10.03.18).
12. Клышников С.Т. и др. Установка для получения водорода из природного газа и водяного пара // Сталь. 2010. № 3. С. 114—115.
13. Промышленная теплоэнергетика и теплотехника. М.: Изд-во МЭИ, 2007.
14. Хрестоматия энергосбережения. М.: Теплоэнергетик, 2002.
15. Tremel А. e. a. Techno-economic Analysis for the Synthesis of Liquid and Gaseous Fuels Based on Hydrogen Production Via Electrolysis // Intern. J. Hydrogen Energy. 2015. V. 40. Pp. 11457—11464.
16. Ключников А.Д. Основы теории интенсивного энергосбережения. М.: Изд-во МЭИ, 2016.
17. Ключников А.Д., Петин С.Н. Повышение энергетической и экологической эффективности производства водорода на базе комплексного использования природного газа на предприятиях черной металлургии // Вестник МЭИ. 2008. № 3. С. 18—23.
18. Пат. № 2637439 РФ. Способ утилизации конвертерных газов для производства водорода / Петин С.Н., Бурмакина А.В., Ипполитов В.А. // Бюлл. изобрет. 2017. № 34.
19. Петин С.Н. Утилизация конвертерных газов с целью получения водорода // Вестник МЭИ. 2018. № 1. С. 29—33.
20. Electricity from Hydrogen with Combined Cycles. The Fusina Project [Электрон. ресурс] https://www. xing-events.com/eventResources/r/v/kfKncJZVrUe3Xh/ Electricity_from_hydrogen_with_combined_cycles_-_ The_Fusina_Project.pdf (дата обращения 15.03.18).
21. Достижения в применении техники отжига в колпаковых печах // Черная металлургия России и стран СНГ в XXI веке: Сб. науч. трудов. М.: Металлургия, 1994. Т. 2 [Электрон. ресурс] http://engineeringsystems. ru/sbornik-nauchnih-trudov-chernya-metalurgiya-rossii-i- stran-sng-tom2/dostizheniya-v-primeneniitehniki-otzhiga. php (дата обращения 15.03.18).
---
Для цитирования: Петин С.Н. Энергетическая эффективность производства и потребления водорода // Вестник МЭИ. 2019. № 2. С. 29—36. DOI: 10.24160/1993-6982-2019-2-29-36.
---
Работа выполнена при поддержке: Министерства образования и науки РФ по государственному заданию в рамках конкурсного отбора научных проектов, выполняемых научными коллективами исследовательских центров и научных лабораторий образовательных организаций высшего образования (заявка № 13.3233.2017/ПЧ)
#
1. Radchenko R.V., Mokrushin A.S., Tyul'pa V.V. Vodorod v Energetike. Ekaterinburg: Izd-vo Ural'skogo Un-ta, 2014. (in Russian).
2. Safronov A.F., Goloskokov A.N. EROEI kak Poka- zatel' Effektivnosti Dobychi i Proizvodstva Energoresur- sov. Burenie i Neft'. 2010;12:48—51. (in Russian).
3. Goloskokov A.N. Kriterii Sravneniya Effektivnosti Traditsionnyh i Al'ternativnyh Energoresursov. Neftegazovoe Delo. 2011;1:285—299. (in Russian).
4. Visalli D. Getting a Decent Return on Your Energy Investment [Elektron. Resurs] http://www.resilience.org/ stories/2006-04-12/getting-decent-return-your-energy- investment (Data Obrashcheniya 08.04.18).
5. Heinberg R. Searching for a Miracle: Net Energy Limits and Fate of Industrial Society. San Francisco: Post Carbon Institute, 2009.
6. Crude Oil Reserves [Elektron. Resurs] www.eia. doe.gov/pub/international/iealf/crudeoilreserves.xls (Data Obrashcheniya 13.04.18).
7. Hall C.A.S., Balogh S., Murphy D.J.R. What is the Minimum EROI that a Sustainable Society Must Have?. Energies. 2009;2 (1):25—47.
8. Hall C. Why EROI Matters (Pt. 1 of 6). The Oil Drum. 2008. [Elektron. Resurs]: http://www.theoildrum. com/node/3786 (Data Obrashcheniya 10.04.18).
9. Sinyak Yu.V. Perspektivy Primeneniya Vodoroda v Sistemah Detsentralizovannogo Elektro- i Teplosnabzhe- niya. Problemy Prognozirovaniya. 2007;3:35—47. (in Russian).
10. Kozlov S.I., Fateev V.N. Vodorodnaya Energetika: Sovremennoe Sostoyanie, Problemy, Perspektivy. M.: Gazprom VNIIGAZ, 2009. (in Russian).
11. Ustanovka po Proizvodstvu Vodoroda na Osnove Parovogo Riforminga [Elektron. Resurs] http://www.mahler-ags.com/ru/hydrogen/hydroform-c.htm (Data Obrashcheniya 10.03.18). (in Russian).
12. Klyshnikov S.T. i dr. Ustanovka dlya Polucheniya Vodoroda iz Prirodnogo Gaza i Vodyanogo Para. Stal'. 2010;3:114—115. (in Russian).
13. Promyshlennaya Teploenergetika i teplotekhnika. M.: Izd-vo MEI, 2007. (in Russian).
14. Hrestomatiya Energosberezheniya. M.: Teploenergetik, 2002. (in Russian).
15. Tremel A. e. a. Techno-economic Analysis for the Synthesis of Liquid and Gaseous Fuels Based on Hydrogen Production Via Electrolysis. Intern. J. Hydrogen Energy. 2015;40:11457—11464.
16. Klyuchnikov A.D. Osnovy Teorii Intensivnogo Energosberezheniya. M.: Izd-vo MEI, 2016. (in Russian).
17. Klyuchnikov A.D., Petin S.N. Povyshenie Energeticheskoy i Ekologicheskoy Effektivnosti Proizvodstva Vodoroda na Baze Kompleksnogo Ispol'zovaniya Prirodnogo Gaza na Predpriyatiyah Chernoy Metallurgii. Vestnik MEI. 2008;3:18—23. (in Russian).
18. Pat. № 2637439 RF. Sposob Utilizatsii Konver- ternyh Gazov dlya Proizvodstva Vodoroda / Petin S.N., Burmakina A.V., Ippolitov V.A. Byull. izobret. 2017;34. (in Russian).
19. Petin S.N. Utilizatsiya Konverternyh Gazov s Tsel'yu Polucheniya Vodoroda. Vestnik MEI. 2018;1: 29—33. (in Russian).
20. Electricity from Hydrogen with Combined Cyc- les. The Fusina Project [Elektron. Resurs] https://www. xing-events.com/eventResources/r/v/kfKncJZVrUe3Xh/ Electricity_from_hydrogen_with_combined_cycles_-_ The_Fusina_Project.pdf (Data Obrashcheniya 15.03.18).
21. Dostizheniya v Primenenii Tekhniki Otzhiga v Kolpakovyh Pechah. Chernaya Metallurgiya Rossii i Stran SNG v XXI Veke: Sb. Nauch. Trudov. M.: Metallurgiya, 1994;2 [Elektron. Resurs] http://engineeringsystems.ru/ sbornik-nauchnih-trudov-chernya-metalurgiya-rossii-i- stran-sng-tom2/dostizheniya-v-primeneniitehniki-otzhiga. php (Data Obrashcheniya 15.03.18). (in Russian).
---
For citation: Petin S.N. Energy Efficiency of Hydrogen Production and Consumption. Bulletin of MPEI. 2019;2:29—36. (in Russian). DOI: 10.24160/1993-6982-2019-2-29-36.
---
The work is executed at support: Ministry of Education and Science of the Russian Federation on the State Task in the Framework of Competitive Selection of Scientific Projects Carried Out by Research Teams of Research Centers and Research Laboratories of Educational Institutions of Higher Education (Application No. 13.3233.2017/ПЧ)
Published
2018-05-14
Section
Industrial Power System (05.14.04)