An Optoelectronic System for Real-Time Surface Deformation Measurements

  • Антон [Anton] Юрьевич [Yu.] Поройков [Poroykov]
  • Константин [Konstantin] Михайлович [M.] Лапицкий [Lapitskiy]
Keywords: deformation measurements, digital image processing, real-time measurements

Abstract

The problem of measuring deformations is relevant for many branches of science and technology. Most often it is encountered in the automotive, construction and aircraft industries. In the latter case, deformation measurements are of vital importance due to a number of features specific to the industry. At present, the task of carrying out investigations in a flight experiment is of relevance in the aircraft industry.

The international research projects called Advanced In-Flight Measurement Techniques (AIM and AIM2) are devoted to development of such methods. A new version of the videogrammetric method, called the Image Pattern Correlation Technique, has been proposed as a result of implementing these projects. The above mentioned technique, which is based on cross-correlation processing of images, has successfully been applied in performing flight tests for different aircraft types ranging from Evektor VUT100 Cobra to Airbus 380.

The developed optoelectronic system for real-time measurements of 3D surface deformations is considered. The system is developed on the basis of the Image Pattern Correlation Technique and makes it possible to carry out measurements in a full-scale experiment and in real time. A detailed description of the method and the system constituent parts is given. An image processing algorithm implemented using the DeformVision software is presented. For checking the system operability, experimental studies using a deforming surface simulator were carried out. The study results have shown that the developed system has an accuracy of 0.5 mm on a surface area of 900 cm2 at a displacement amplitude of 10 mm. The system software allows real-time measurements to be carried out at a rate of no less than 5 measurements per second.

Information about authors

Антон [Anton] Юрьевич [Yu.] Поройков [Poroykov]

Ph.D. (Techn.), Assistant Professor of Physics Dept. named V.A. Fabrikant, NRU MPEI, e-mail: poroykovay@gmail.com

Константин [Konstantin] Михайлович [M.] Лапицкий [Lapitskiy]

Ph.D. (Techn.), Assistant Professor of Physics Dept. named V.A. Fabrikant, NRU MPEI, e-mail: lapitskykm@mail.ru

References

1. Boden F., Jentink H., Petit C. IPCT Wing Deformation Measurements on a Large Transport Aircraft // Advanced In-Flight Measurement Techniques. Springer,
2013. Pp. 93—115.
2. Veerman H.P.J., Kannemans H., Jentink H.W. Highly Accurate Aircraft In-flight Wing Deformation Measurements Based on Image Correlation // Advanced In-flight Measurement Techniques. Springer, 2013. Pp. 15—32.
3. Kirmse T. e. a. Fan Blade Deformation Measurements on the DLR Airbus A320-ATRA by Means of IPCT as Part of the Ground Test Campaign in the Frame of the DLR-project SAMURAI // New Results in Numerical and Experimental Fluid Mechanics X. Springer, 2016. Pp. 629—638.
4. Kirmse T. Recalibration of a Stereoscopic Camera System for In-flight Wing Deformation Measurements // Measurement Sci. and Techn. 2016. V. 27. No. 5. P. 054001.
5. AIM — Advanced In-flight Measurement Techniques [Электрон. ресурс] http://aim.dlr.de (дата обращения 14.03.2018).
6. Poroikov A.Yu., Skornyakova N.M. An Analysis of the Image Pattern Correlation Technique for Measuring the Bending of A Metal Surface // Measurement Techniques. 2011. V. 53. No. 10. Pp. 1147—1151.
7. Boden F. e. a. A Accuracy of Measurement of Dynamic Surface Deformations by the Image Pattern Correlation Technique // Optoelectronics, Instrumentation and Data Proc. 2014. V. 50. No. 5. Pp. 474—481.
8. Poroikov A.Yu. Reconstruction of 3D Profile of a Deformed Metallic Plate by Means of the Image Pattern Correlation Technique // Measurement techniques. 2014. V. 57. No. 4. Pp. 390—395.
9. Boden F. e. a. In-flight Measurements of Propeller Blade Deformation on a VUT100 Cobra Aeroplane Using a Co-rotating Camera System // Measurement Sci. and Techn. 2016. V. 27. No. 7. P. 074013.
10. Иншаков С.И. и др. Видеограмметрический метод бесконтактных измерений мгновенной деформации лопастей вращающихся воздушных винтов // Ученые записки ЦАГИ. 2013. Т. 44. № 4. С. 547—558.
11. Satake S. e. a. Special-purpose Computer for Particle Image Velocimetry // Computer Phys. Comm. 2011. V. 182. No. 5. Pp. 1178—1182.
12. Bennis A., Leeser M., Tadmor G. Implementing a Highly Parameterized Digital PIV System on Reconfigurable Hardware // Proc. XX IEEE Intern. Conf. Application-specific Systems, Architectures and Processors. 2009. Pp. 32—37.
13. Lei Z., Zhang F., Li X. FPGA Implementation of 3D-displacement Measurement Based on 2D-DIC and FPP // Intern. Symp. Photonics and Optoelectronics. 2014. P. 923304.
14. Salvi J., Armangué X., Batlle J. A Comparative Review of Camera Calibrating Methods with Accuracy Evaluation // Pattern Recognition. 2002. V. 35. No. 7. Pp. 1617—1635.
15. Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2012.
16. Frigo M., Johnson S.G. The Design and Implementation of FFTW3 // Proc. IEEE Special Issue on Program Generation, Optimization, and Platform Adaptation. 2005. V. 93. No. 2. Pp. 216—231.
17. Поройков А.Ю. Комплекс определения погрешности измерения формы гибкой деформируемой поверхности методом корреляции фоновых изображений // Вестник МГТУ им. Н.Э. Баумана. Серия «Приборостроение». 2017. № 6. С. 28—39.
---
Для цитирования: Поройков А.Ю., Лапицкий К.М. Оптико-электронный комплекс измерения деформации поверхности в режиме реального времени // Вестник МЭИ. 2019. № 2. С. 101—108. DOI: 10.24160/1993-6982-2019-2-101-108.
#
1. Boden F., Jentink H., Petit C. IPCT Wing Deformation Measurements on a Large Transport Aircraft. Advanced In-Flight Measurement Techniques. Springer, 2013:93—115.
2. Veerman H.P.J., Kannemans H., Jentink H.W. Highly Accurate Aircraft In-flight Wing Deformation Measurements Based on Image Correlation. Advanced In-flight Measurement Techniques. Springer, 2013:15—32.
3. Kirmse T. e. a. Fan Blade Deformation Measurements on the DLR Airbus A320-ATRA by Means of IPCT as Part of the Ground Test Campaign in the Frame of the DLR-project SAMURAI. New Results in Numerical and Experimental Fluid Mechanics X. Springer, 2016:629—638.
4. Kirmse T. Recalibration of a Stereoscopic Camera System for In-flight Wing Deformation Measurements. Measurement Sci. and Techn. 2016;27;5:054001.
5. AIM — Advanced In-flight Measurement Techniques [Elektron. Resurs] http://aim.dlr.de (Data Obrashcheniya 14.03.2018).
6. Poroikov A.Yu., Skornyakova N.M. An Analysis of the Image Pattern Correlation Technique for Measuring the Bending of A Metal Surface. Measurement Techniques. 2011;53;10:1147—1151.
7. Boden F. e. a. A Accuracy of Measurement of Dynamic Surface Deformations by the Image Pattern Correlation Technique. Optoelectronics, Instrumentation and Data Proc. 2014;50;5:474—481.
8. Poroikov A.Yu. Reconstruction of 3D Profile of a Deformed Metallic Plate by Means of the Image Pattern Correlation Technique. Measurement techniques. 2014;57;4:390—395.
9. Boden F. e. a. In-flight Measurements of Propeller Blade Deformation on a VUT100 Cobra Aeroplane Using a Co-rotating Camera System. Measurement Sci. and Techn. 2016;27;7:074013.
10. Inshakov S.I. i dr. Videogrammetricheskiy Metod Beskontaktnykh Izmereniy Mgnovennoy Deformatsii Lopastey Vrashchayushchikhsya Vozdushnykh Vintov.Uchenye Zapiski TSAGI. 2013;44;4:547—558. (in Russian).
11. Satake S. e. a. Special-purpose Computer for Particle Image Velocimetry. Computer Phys. Comm. 2011; 182;5:1178—1182.
12. Bennis A., Leeser M., Tadmor G. Implementing a Highly Parameterized Digital PIV System on Reconfigurable Hardware. Proc. XX IEEE Intern. Conf. Application-specific Systems, Architectures and Processors. 2009: 32—37.
13. Lei Z., Zhang F., Li X. FPGA Implementation of 3D-displacement Measurement Based on 2D-DIC and FPP. Intern. Symp. Photonics and Optoelectronics. 2014: 923304.
14. Salvi J., Armangué X., Batlle J. A Comparative Review of Camera Calibrating Methods with Accuracy Evaluation. Pattern Recognition. 2002;35;7:1617—1635.
15. Gonsales R., Vuds R. Tsifrovaya Obrabotka Izobrazheniy. M.: Tekhnosfera, 2012. (in Russian).
16. Frigo M., Johnson S.G. The Design and Implementation of FFTW3. Proc. IEEE Special Issue on Program Generation, Optimization, and Platform Adaptation. 2005;93;2:216—231.
17. Poroykov A.Yu. Kompleks Opredeleniya Pogreshnosti Izmereniya Formy Gibkoy Deformiruemoy Poverkhnosti Metodom Korrelyatsii Fonovykh Izobrazheniy. Vestnik MGTU im. N.E. Baumana. Seriya «Priborostroenie». 2017;6:28—39. (in Russian).
---
For citation: Poroykov A.Yu., Lapitskiy K.M. An Optoelectronic System for Real-Time Surface Deformation Measurements. Bulletin of MPEI. 2019;2:101—108. (in Russian). DOI: 10.24160/1993-6982-2019-2-101-108.
Published
2018-03-15
Section
Mathematical and Software Support of Computing Machines, Complexes and Computer (05.13.11)