On Evaluating the State of a Hydropower System’s Hydraulic Engineering Structures under Modern Conditions

  • Алексей [Aleksey] Юрьевич [Yu.] Александровский [Aleksandrovsky]
  • Дмитрий [Dmitriy] Сергеевич [S.] Сычев [Sychev]
Keywords: limitation of water level variation rate in a water storage reservoir, change of power performance parameters, cascade of Yenisei HPPs

Abstract

The effect the limitations imposed on the water storage reservoir’s headrace level (HRL) variation rate have on the hydroelectric power plant (HPP) power performance indicators is studied taking the cascade of Yenisei HPPs as an example. For quantitatively determining the effect the limitations imposed on the Sayano-Shushenskaya HPP’s HRL variation rate (depending on the air temperature in the preceding period) have on the HPP power performance indicators, water energy calculations were carried out for the following Yenisei cascade operation scenarios:

  • operation of the Sayano-Shushenskaya HPP with variable limitations imposed on the HRL variation rate depending on the air temperature in the previous period;
  • operation of the Sayano-Shushenskaya and Krasnoyarsk HPPs with variable limitations imposed on the HRL variation rate depending on the air temperature in the previous period.

The mean energy capability (E0) and the guaranteed power output in winter (Nguar) were taken as the HPP performance indicators from which the effect of limitations was estimated.

As a result of the accomplished computations, the guaranteed winter power output in the Sayano-Shushenskaya hydropower system decreased by 17.37%, and its mean energy capability decreased by 3.29%.

Based on the accomplished water-energy calculations, a new (corrected) operating mode of the Sayano-Shushenskaya HPP was obtained, in which the regime of levels did not escape beyond the temperature-related limitations. The changes in the Sayano-Shushenskaya HPP operation mode led to a change in the HPP tail race flows. As a result, the Krashoyarsk HPP operation mode was also changed due to the new inflow regime to its site. The study results show very clearly that application of environment temperature-related limitations on the Sayano-Shushenskaya HPP hydraulic structures directly affects the power performance indicators of the Krasnoyarsk HPP. The strongest effect on the Krasnoyarsk HPP parameters takes place at the average temperature in the Karlov site from –17 °С to –11.8 °С in winter and from +8.5 °С to +11 °С in summer. This is connected with the Sayano-Shushenskaya HPP HRL variation rate limitation curve pattern, which in its turn entails a decrease in the HPP tail race flow and, as a consequence, a decrease in the total inflow to the Krasnoyarsk HPP site. As regards the temperature range at the Krasnoyarskaya HPP site, it is from –20 °C to –11 °C for the winter period and from +5 °C to +8 °C for the summer period. The difference in the mean energy capability and guaranteed power output of the Krasnoyarsk HPP during operation under the above-mentioned conditions is 12.9% for mean energy capability and 13.7% for guaranteed winter power output.

Key words: limitation of water level variation rate in a water storage reservoir, change of power performance parameters, cascade of Yenisei HPPs.

Information about authors

Алексей [Aleksey] Юрьевич [Yu.] Александровский [Aleksandrovsky]

Dr.Sci.  (Techn.),  Professor of  Hydropower  and  Renewable  Energy  Sources  Dept., NRU MPEI, e-mail: ayaleksand@mail.ru

Дмитрий [Dmitriy] Сергеевич [S.] Сычев [Sychev]

Head of the Project Implementation Department of LLC "ENTEK», e-mail: sychev11-d-s@mail.ru

References

1. Тетельмин В.В. Роль глубинной фильтрации в обеспечении подвижности основания высоких плотин // Гидротехника. 2015. № 1 (38). С. 72—79.
2. Тетельмин В.В. Плотина Саяно-Шушенской ГЭС: состояние, процессы, прогноз. М.: Либроком, 2011.
3. Носова О.Н., Марголина О.Г. Фильтрационный режим в основании плотины Саяно-Шушенской ГЭС в процессе поэтапного наполнения водохранилища // Гидротехническое строительство. 1990. № 8. С. 32—36.
4. Брызгалов В.И. Из опыта создания и освоения Красноярской и Саяно-Шушенской гидроэлектростанций. Красноярск: Сибирский издат. дом «Суриков», 1999.
5. Погода и климат [Офиц. сайт] http://cliware. meteo.ru/goskom_cat/list/index.jsp (дата обращения 10.10.2018).
6. Вульфович Н.А., Потехин Н.П. Об интенсивностях наполнения и опорожнения водохранилища бетонных плотин (на примере арочно-гравитационной плотины Саяно-Шушенской ГЭС) // Гидротехническое строительство. 2017. № 12 (12). С. 11—19.
7. Савич А.И., Бронштейн В.И., Грошев М.Е. Статическое и динамическое поведение Саяно-Шушенской арочно-гравитационной плотины // Гидротехническое строительство. 2013. № 3. С. 3—13.
8. Вульфович Н.А. Оценка несущей способности плотины Саяно-Шушенской ГЭС по данным натурных наблюдений в послеаварийный период эксплуатации (2009 — 2012 гг.) // Гидротехническое строительство. 2013. № 4. С. 10—18.
9. Александровский А.Ю., Сычев Д.С. Влияние ограничения скорости изменения уровня воды в водохранилище на энергетические показатели ГЭС // Гидротехническое строительство. 2017. № 6 (40). С. 40—45.
---
Для цитирования: Александровский А.Ю., Сычев Д.С. К оценке состояния гидротехнических сооружений гидроузлов в современных условиях // Вестник МЭИ. 2019. № 3. С. 37—45. DOI: 10.24160/1993-6982-2019-3-37-45
#
1. Tetel'min V.V. Rol' Glubinnoy Fil'tratsii v Obespechenii Podvizhnosti Osnovaniya Vysokikh Plotin. Gidrotekhnika. 2015;1 (38):72—79. (in Russian).
2. Tetel'min V.V. Plotina Sayano-Shushenskoy GES: Sostoyanie, Protsessy, Prognoz. M.: Librokom, 2011. (in Russian).
3. Nosova O.N., Margolina O.G. Fil'tratsionnyy Rezhim v Osnovanii Plotiny Sayano-Shushenskoy GES v Protsesse Poetapnogo Napolneniya Vodokhranilishcha. Gidrotekhnicheskoe Stroitel'stvo. 1990;8:32—36. (in Russian).
4. Bryzgalov V.I. Iz Opyta Sozdaniya i Osvoeniya Krasnoyarskoy i Sayano-Shushenskoy Gidroelektrostantsiy. Krasnoyarsk: Sibirskiy Izdat. Dom «Surikov», 1999. (in Russian).
5. Pogoda i klimat [Ofits. sayt] http://cliware. meteo.ru/goskom_cat/list/index.jsp (data obrashcheniya 10.10.2018). (in Russian).
6. Vul'fovich N.A., Potekhin N.P. Ob Intensivnostyakh Napolneniya i Oporozhneniya Vodokhranilishcha Betonnykh Plotin (na Primere Arochno-gravitatsionnoy Plotiny Sayano-Shushenskoy GES). Gidrotekhnicheskoe Stroitel'stvo. 2017;12 (12):11—19. (in Russian).
7. Savich A.I., Bronshteyn V.I., Groshev M.E. Staticheskoe i Dinamicheskoe Povedenie Sayano-Shushenskoy Arochno-gravitatsionnoy Plotiny. Gidrotekhnicheskoe Stroitel'stvo. 2013;3:3—13. (in Russian).
8. Vul'fovich N.A. Otsenka Nesushchey Sposobnosti Plotiny Sayano-Shushenskoy GES po Dannym Natur nykh Nablyudeniy v Posleavariynyy Period Ekspluatatsii (2009 — 2012 gg.). Gidrotekhnicheskoe Stroitel'stvo. 2013;4:10—18. (in Russian).
9. Aleksandrovskiy A.Yu., Sychev D.S. Vliyanie Ogranicheniya Skorosti Izmeneniya Urovnya Vody v Vodokhranilishche na Energeticheskie Pokazateli GES. Gidrotekhnicheskoe Stroitel'stvo. 2017;6 (40):40—45. (in Russian).
---
For citation: Aleksandrovsky A.Yu., Sychev D.S. On Evaluating the State of a Hydropower System’s Hydraulic Engineering Structures under Modern Conditions. Bulletin of MPEI. 2019;3:37—45. (in Russian). DOI: 10.24160/1993-6982-2019-3-37-45
Published
2018-10-30
Section
Renewable Energy Installations (05.14.08)