Electromagnetic and Thermal Analysis of Electrical Machines Made of Composite Materials
Abstract
The progress in improvement of the electrical, thermal, and mechanical properties of composite materials opens new possibilities for replacing metal components in constructing electrical machines. Owing to low density of the majority of these materials in comparison with conventional materials, it becomes possible to decrease the specific weight and achieve better processability due to minimal machining and the possibility of making parts having the finished shape. Studies of using composite materials in individual units of electrical machines show the possibility of minimizing material intensity, increasing energy density, and achieving better energy efficiency. One of possible ways to increase energy density and energy efficiency is to construct high-speed electrical machines that are able to generate maximum power with the minimum amount of active and structural materials. The characteristics of electrical machines are determined by losses, which in turn depend on the electromagnetic and thermal properties of the applied materials. In this respect, composite materials differ favorably from conventional materials. Thus, composite materials consist of plastic bases reinforced with fillers. By combining dissimilar materials, a new material is obtained, the properties of which may differ significantly from the properties of its individual components. The results from a comparative analysis carried out for three designs of electrical machines with different contents of composite materials are presented. Full electromagnetic and thermal analyses of these designs carried out using the finite element methods are given, their specific characteristics are determined, and their efficiencies are estimated. It has been found that the weight of an electrical machine that consists completely of composite materials is by 73% smaller than that of an electrical machine made of conventional materials. The efficiency of an electrical machine made fully of composite materials is 92%, a conclusion that confirms good prospects of applying composite materials in electrical machine components. The thermal analysis results confirm that an electrical machine made completely of composite materials will have full operability.
References
2. Liu Y., Ou J., Schiefer M., Breining P., Grilli F., Doppelbauer M. Application of an Amorphous Core to an Ultra-high-speed Sleeve-free Interior Permanent-magnet Rotor // IEEE Trans. Industrial Electronics. 2018. V. 65. No. 11. Pp. 8498—8509.
3. Pfister PP. D., Perriard Y. Very-high-speed Slotless Permanent-magnet Motors: Analytical Modeling, Optimization, Design, and Torque Measurement Methods // IEEE Trans. Industrial Electronics. 2010. V. 57. No. 1. Pp. 296—303.
4. Gerada D., Mebarki A., Brown N.L., Gerada C., Cavagnino A., Boglietti A. High-speed Electrical Machines: Technologies, Trends, and Developments // IEEE Trans. Industrial Electronics. 2014. V. 61. No. 6. Pp. 2946—2959.
5. Liu C., Lee D.G. Design of the Hybrid Composite Journal Bearing Assembled by Interference Fit // Composite Structures. 2006. V. 75. Pp. 222—230.
6. Guo Y., Zhu J., Watterson P.A., Wu W. Comparative Study of 3-d Flux Electrical Machines with Soft Magnetic Composite Cores // IEEE Trans. Industry Appl. 2003. V. 39. No. 6. Pp. 1696—1703.
7. Xu Z. e. a. A Semi-flooded Cooling for a High Speed Machine: Concept, Design and Practice of an Oil Sleeve // Proc. IECON 2017 — 43rd Annual Conf. IEEE Industrial Electronics Soc. 2017. Pp. 8557—8562.
8. Tuysuz A., Meyer F., Steichen M., Zwyssig C., Kolar J.W. Advanced Cooling Methods for High-speed Electrical Machines // IEEE Trans. Industry Appl. 2017. V. 53. No. 3. Pp. 2077—2087.
9. Pyrhönen J., Montonen J., Lindh P., Vauterin J., Otto M. Replacing Copper with New Carbon Nanomaterials in Electrical Machine Windings // Intern. Rev. Electrical Eng. 2015. V. 10. No. 1. Pp. 12—21.
10. Domingo-Roca R., Jackson J.C., Windmill J.F.C. 3D-printing Polymer-based Permanent magnets // Mater. Des. 2018. V. 153. Pp. 120—128.
11. Kurth K. H., Drummer D. Improvement of the Magnetic Properties of Injection Molded Polymer Bonded Magnets // Proc. 3rd Intern. Electric Drives Production Conf. 2013. Pp. 1—5.
12. Исмагилов Ф.Р., Вавилов В.Е., Саяхов И.Ф. К вопросу применения композитных материалов в электрических машинах (обзор) // Новое в российской электроэнергетике. 2018. № 9. C. 17—32.
13. Funck R. Composite Materials in High Efficient Sleeve Applications of Electric Machines. Circomp GmbH. [Электрон. ресурс] http://www.circomp.de/downloads/circomp-paper-sleeve-applications.pdf (дата обращения 04.12.2018).
14. Пресс-материал АГ-4В [Электрон. ресурс] http://www.stekloplastic.com/produktsiya/press-material-ag-4v (дата обращения 04.12.2018).
15. Schiefer M., Doppelbauer M. Indirect Slot Cooling for High Power Density Machines with Concentrated Winding // IEEE Intern. Electric Machines and Drives Conf. 2015. Pp. 1820—1825.
16. Tanimoto K., Kajihara K., Yanai K. Hybrid Ceramic Ball Bearings for Turbochargers. Presented at SAE 2000 World Congress [Электрон. ресурс] https://doi.org/10.4271/2000-01-1339 (дата обращения 04.12.2018).
17. Krings A., Boglietti A., Cavagnino A., Sprague S. Soft Magnetic Material Status and Trends in Electric Machines // IEEE Trans. Industrial Electronics. 2017. V. 64. No. 3. Pp. 2405—2414.
18. Lekawa-Raus A., Patmore J., Kurzepa L., Bulmer J., Koziol K. Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring // Advanced Functional Materials. 2014. V. 24. No. 24. Pp. 3661—3682.
19. Magnets. Magnequench [Электрон. ресурс] https://mqitechnology.com/products/magnets (дата обращения 04.12.2018).
20. Kolpakhchyan P.P. G., Lobov B.N., Mikitinskiy A.P., Rusakevich I.V. The Production Possibility of Permanent Magnet High Speed Electric Generator Rotors // Proc. 10th Intern. Conf. Electrical Power Drive Syst. 2018. Pp. 46—50.
21. Andonian A.T., Huynh C. Rotor Retention and Loss-reduction for High-speed Permanent Magnet Motor Generators. Presented at Motor and Drive Systems Conference [Электрон. ресурс] https://motoranddriveconference.com/2017/08/rotor-retention-and-loss-reduction-for-high-speed-permanent-magnet-motor-generators/ (Дата обращения 04.12.2018).
---
Для цитирования: Исмагилов Ф.Р., Вавилов В.Е., Саяхов И.Ф., Ематин Е.А. Электромагнитный и тепловой анализ электрических машин из композитных материалов // Вестник МЭИ. 2020. № 2. С. 52—61. DOI: 10.24160/1993-6982-2020-2-52-61.
#
1. Hong D.K., Joo D.S., Woo B.C., Jeong Y.H., Koo D.H. Investigations on a Super High Speed Motor-Generator for Microturbine Application Using Amorphous Cores. IEEE Trans. Magn. 2013;49:4072—4075.
2. Liu Y., Ou J., Schiefer M., Breining P., Grilli F., Doppelbauer M. Application of an Amorphous Core to an Ultra-high-speed Sleeve-free Interior Permanent-magnet Rotor. IEEE Trans. Industrial Electronics. 2018; 65;11:8498—8509.
3. Pfister PP. D., Perriard Y. Very-high-speed Slotless Permanent-magnet Motors: Analytical Modeling, Optimization, Design, and Torque Measurement Methods. IEEE Trans. Industrial Electronics. 2010;57;1:296—303.
4. Gerada D., Mebarki A., Brown N.L., Gerada C., Cavagnino A., Boglietti A. High-speed Electrical Machines: Technologies, Trends, and Developments.IEEE Trans. Industrial Electronics. 2014;61;6: 2946—2959.
5. Liu C., Lee D.G. Design of the Hybrid Composite Journal Bearing Assembled by Interference Fit. Composite Structures. 2006;75:222—230.
6. Guo Y., Zhu J., Watterson P.A., Wu W. Comparative Study of 3-d Flux Electrical Machines with Soft Magnetic Composite Cores. IEEE Trans. Industry Appl. 2003;39;6:1696—1703.
7. Xu Z. e. a. A Semi-flooded Cooling for a High Speed Machine: Concept, Design and Practice of an Oil Sleeve. Proc. IECON 2017 — 43rd Annual Conf. IEEE Industrial Electronics Soc. 2017:8557—8562.
8. Tuysuz A., Meyer F., Steichen M., Zwyssig C., Kolar J.W. Advanced Cooling Methods for High-speed Electrical Machines. IEEE Trans. Industry Appl. 2017; 53;3:2077—2087.
9. Pyrhönen J., Montonen J., Lindh P., Vauterin J., Otto M. Replacing Copper with New Carbon Nanomaterials in Electrical Machine Windings. Intern. Rev. Electrical Eng. 2015;10;1:12—21.
10. Domingo-Roca R., Jackson J.C., Windmill J.F.C. 3D-printing Polymer-based Permanent magnets. Mater. Des. 2018;153:120—128.
11. Kurth K. H., Drummer D. Improvement of the Magnetic Properties of Injection Molded Polymer Bonded Magnets. Proc. 3rd Intern. Electric Drives Production Conf. 2013:1—5.
12. Ismagilov F.R., Vavilov V.E., Sayakhov I.F. K Voprosu Primeneniya Kompozitnykh Materialov v Elektricheskikh Mashinakh (Obzor). Novoe v Rossiyskoy Elektroenergetike. 2018;9:17—32. (in Russian).
13. Funck R. Composite Materials in High Efficient Sleeve Applications of Electric Machines. Circomp GmbH. [Elektron. Resurs] http://www.circomp.de/downloads/circomp-paper-sleeve-applications.pdf (Data Obrashcheniya 04.12.2018).
14. Press-material AG-4V [Elektron. Resurs] http:// www.stekloplastic.com/produktsiya/press-material-ag-4v (Data Obrashcheniya 04.12.2018). (in Russian).
15. Schiefer M., Doppelbauer M. Indirect Slot Cooling for High Power Density Machines with Concentrated Winding. IEEE Intern. Electric Machines and Drives Conf. 2015:1820—1825.
16. Tanimoto K., Kajihara K., Yanai K. Hybrid Ceramic Ball Bearings for Turbochargers. Presented at SAE 2000 World Congress [Elektron. Resurs] https://doi. org/10.4271/2000-01-1339 (Data Obrashcheniya 04.12.2018).
17. Krings A., Boglietti A., Cavagnino A., Sprague S. Soft Magnetic Material Status and Trends in Electric Machines. IEEE Trans. Industrial Electronics. 2017;64;3: 2405—2414.
18. Lekawa-Raus A., Patmore J., Kurzepa L., Bulmer J., Koziol K. Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring. Advanced Functional Materials. 2014;24;24:3661—3682.
19. Magnets. Magnequench [Elektron. Resurs] https:// mqitechnology.com/products/magnets (Data Obrashcheniya 04.12.2018).
20. Kolpakhchyan P.P. G., Lobov B.N., Mikitinskiy A.P., Rusakevich I.V. The Production Possibility of Permanent Magnet High Speed Electric Generator Rotors. Proc. 10th Intern. Conf. Electrical Power Drive Syst. 2018:46—50.
21. Andonian A.T., Huynh C. Rotor Retention and Loss-reduction for High-speed Permanent Magnet Motor Generators. Presented at Motor and Drive Systems Conference [Elektron. Resurs] https://motor-anddriveconference.com/2017/08/rotor-retention-and-loss-reduction-for-high-speed-permanent-magnet-motor-generators/ (Data Obrashcheniya 04.12.2018).
---
For citation: Ismagilov F.R., Vavilov V.E., Sayakhov I.F., Ematin E.A. Electromagnetic and Thermal Analysis of Electrical Machines Made of Composite Materials. Bulletin of MPEI. 2020;2:52—61. (in Russian). DOI: 10.24160/1993-6982-2020-2-52-61.