Model-Oriented Designing of an Electric Drive Control System and Its Investigation

  • Игорь [Igor] Сергеевич [S.] Полющенков [Polyushchenkov]
Keywords: electric drive control system, model-oriented programming, microprocessor control, coordinate control, electric motor

Abstract

Materials on the development of a microprocessor control system for an electric drive based on various types of electric motors are presented. The development is aimed at achieving the electric drive characteristics and its control functionality similar to those in the existing analogs. The development was carried out using model-oriented programming tools. The methodology of their application involves automatic generation of the software from mathematical models, in which the microprocessor implementation of computational, measurement, and control processes is taken into account in advance.

The automatically generated software and the results of electric drive experimental studies were analyzed at different stages of its development, and it has been shown from that analysis that the standard model-oriented programming tools do not make it possible to fully solve all the problems, nor do they allow the characteristics of the analogs to be fully achieved. The features of the automatically generated software that lead to incorrect operation and degradation of the electric drive operating characteristics have been identified. The standard tools did not allow the software to be developed with the required degree of detail. To overcome these shortcomings of the standard development tools, they were supplemented with user software, an approach that does not contradict the model-oriented programming concept, since the software structure has been developed on the basis of standard model elements.

The most striking examples of refining or replacing the standard model units and subsystems based on them in case of their incorrect operation, bulkiness and insufficient expressiveness are given. This applies primarily to software subsystems critical in terms of their execution time. Collisions between the software subsystems have been eliminated, and timely updating of information during their interaction has been achieved. Owing to application of the user software, more rational distribution of the microcontroller resources has been achieved. Some of its elements were developed as a result of refining the text of the automatically generated routines. Various solutions improving the electric drive characteristics and expanding its control functionality have been experimentally tested and applied. The electric drive investigation results have shown that it is approximately consistent with the analogs in terms of functionality and performance.

Information about author

Игорь [Igor] Сергеевич [S.] Полющенков [Polyushchenkov]

Ph.D. (Techn.), Assistant Professor of Electromechanical Systems Dept., Branch of NRU MPEI in Smolensk, e-mail: polyushenckov.igor@yandex.ru

References

1. Model-Based Design [Электрон. ресурс] www.math-works.com (дата обращения 15.04.2019).
2. Waijung Blockset [Электрон. ресурс] http://waijung.aimagin.com (дата обращения 15.03.2019).
3. Exponenta [Электрон. ресурс] http://www.exponenta.ru (дата обращения 15.04.2019).
4. Борисевич А.В., Омельченко Н.В. Реализация векторного управления асинхронным электродвигателем на микроконтроллере STM32F4 // Современные научные исследования и инновации. 2014. № 4. Ч. 1 [Электрон. ресурс] http://web.snauka.ru/ issues/2014/04/33144 (дата обращения 15.04.2019).
5. Krizan J., Ertl L., Bradac M., Jasansky M., Andreev A. Automatic Code Generation from Matlab/Simulink for Critical Applications // Proc. 27th Canadian Conf. Electrical and Computer Eng. 2014. Pp. 1–6.
6. Horvath K., Kuslits M. Model-based Development of Induction Motor Control Algorithms with Modular Architecture // Proc. IEEE Intern. Power Electronics and Motion Control Conf. 2016. Pp. 133—138.
7. Maxon Motor [Электрон. ресурс] http://www.maxon-motor.com (дата обращения 10.04.2019).
8. Анучин А.С. Системы управления электроприводов. М.: Издат. дом МЭИ, 2015.
9. Башарин А.В., Новиков В.А., Соколовский Г.Г. Управление электроприводами. Л.: Энергоиздат, 1982.
10. Терехов В.М., Осипов О.И. Системы управления электроприводов. М.: Академия, 2006.
11. Полющенков И.С. Разработка системы управления электропривода на основе метода модельно-ориентированного программирования // Вестник МЭИ. 2016. № 6. С. 87—95.
12. Полющенков И.С. Разработка программного обеспечения для управления электроприводом в технологической системе с применением метода модельно-ориентированного программирования // Вестник МЭИ. 2017. № 4. С. 83—91.
13. STM32 Arm Cortex Microcontrollers [Электрон. ресурс] www.st.com (дата обращения 15.04.2019).
14. Дьяконов В.П. Matlab 6/6.1/6.5 + Simulink/4.5 в математике и моделировании. М.: СОЛОН-Пресс, 2008.
15. Розанов Ю.К., Соколова Е.М. Электронные устройства электромеханических систем. М.: Академия, 2004.
16. Терехин В.Б. Моделирование систем электропривода в Simulink (Matlab 7.0.1). Томск: Изд-во Томского политехн. ун-та, 2010.
17. Герман-Галкин С.Г. Компьютерное моделирование полупроводниковых систем. СПб.: Корона-Принт, 2001.
18. Полющенков И.С. Идентификация математической модели электромеханической системы // Вестник МЭИ. 2019. № 1. С. 69—78.
19. Денисенко В.В. Компьютерное управление технологическим процессом, экспериментом, оборудованием. М.: Горячая линия – Телеком, 2009.
20. Егупов Н.Д. Методы классической и современной теории управления. Т. 2. М.: Изд-во МГТУ им. Н.Э. Баумана, 2000.
---
Для цитирования: Полющенков И.С. Модельно-ориентированная разработка системы управления электропривода и её исследование // Вестник МЭИ. 2020. № 3. С. 65—74. DOI: 10.24160/1993-6982-2020-3-65-74.
#
1. Model-Based Design [Elektron. Resurs] www.math-works.com (Data Obrashcheniya 15.04.2019).
2. Waijung Blockset [Elektron. Resurs] http://waijung.aimagin.com (Data Obrashcheniya 15.03.2019).
3. Exponenta [Elektron. resurs] http://www.exponenta.ru (data obrashcheniya 15.04.2019). (in Russian).
4. Borisevich A.V., Omel'chenko N.V. Realizatsiya Vektornogo Upravleniya Asinkhronnym Elektrodvigatelem na Mikrokontrollere STM32F4. Sovremennye Nauchnye Issledovaniya i Innovatsii. 2014;4;1 [Elektron. Resurs] http://web.snauka.ru/issues/2014/04/33144 (Data Obrashche- niya 15.04.2019). (in Russian).
5. Krizan J., Ertl L., Bradac M., Jasansky M., Andreev A. Automatic Code Generation from Matlab/ Simulink for Critical Applications. Proc. 27th Canadian Conf. Electrical and Computer Eng. 2014:1–6.
6. Horvath K., Kuslits M. Model-based Development of Induction Motor Control Algorithms with Modular Architecture. Proc. IEEE Intern. Power Electronics and Motion Control Conf. 2016:133—138.
7. Maxon Motor [Elektron. Resurs] http://www.maxon-motor.com (Data Obrashcheniya 10.04.2019).
8. Anuchin A.S. Sistemy Upravleniya Elektroprivodov. M.: Izdat. Dom MEI, 2015. (in Russian).
9. Basharin A.V., Novikov V.A., Sokolovskiy G.G. Upravlenie Elektroprivodami. L.: Energoizdat, 1982. (in Russian).
10. Terekhov V.M., Osipov O.I. Sistemy Upravleniya Elektroprivodov. M.: Akademiya, 2006. (in Russian).
11. Polyushchenkov I.S. Razrabotka Sistemy Upravleniya Elektroprivoda na Osnove Metoda Model'no-orientirovannogo Programmirovaniya. Vestnik MEI. 2016;6:87—95. (in Russian).
12. Polyushchenkov I.S. Razrabotka Programmnogo Obespecheniya dlya Upravleniya Elektroprivodom v Tekhnologicheskoy Sisteme s Primeneniem Metoda Model'no-orientirovannogo Programmirovaniya. Vestnik MEI. 2017; 4: 83—91. (in Russian).
13. STM32 Arm Cortex Microcontrollers [Elektron. Resurs] www.st.com (Data Obrashcheniya 15.04.2019).
14. D'yakonov V.P. Matlab 6/6.1/6.5 + Simulink/4.5 v Matematike i Modelirovanii. M.: SOLON-Press, 2008. (in Russian).
15. Rozanov Yu.K., Sokolova E.M. Elektronnye Ustroystva Elektromekhanicheskikh Sistem. M.: Akademiya, 2004. (in Russian).
16. Terekhin V.B. Modelirovanie Sistem Elektroprivoda v Simulink (Matlab 7.0.1). Tomsk: Izd-vo Tomskogo Рolitekhn. un-ta, 2010. (in Russian).
17. German-Galkin S.G. Komp'yuternoe Modelirovanie Poluprovodnikovykh Sistem. SPb.: Korona-Print, 2001. (in Russian).
18. Polyushchenkov I.S. Identifikatsiya Matematicheskoy Modeli Elektromekhanicheskoy Sistemy. Vestnik MEI. 2019;1:69—78. (in Russian).
19. Denisenko V.V. Komp'yuternoe Upravlenie Tekhnologicheskim Protsessom, Eksperimentom, Oborudovaniem. M.: Goryachaya liniya – Telekom, 2009. (in Russian).
20. Egupov N.D. Metody Klassicheskoy i Sovremennoy Teorii Upravleniya. T. 2. M.: Izd-vo MGTU im. N.E. Baumana, 2000. (in Russian).
---
For citation: Polyushchenkov I.S. Model-Oriented Designing of an Electric Drive Control System and Its Investigation. Bulletin of MPEI. 2020;3:65—74. (in Russian). DOI: 10.24160/1993-6982-2020-3-65-74.
Published
2019-04-12
Section
Electrical Complex and Systems (05.09.03)