Determining the Relative Concentration of Deuterium Implanted in Beryllium Based on the Elastic Peak Electron Spectroscopy

  • Виктор [Viktor] Петрович [P.] Афанасьев [Afanas’ev]
  • Юлия [Yuliya] Николаевна [N.] Бодиско [Bodisko]
  • Александр [Aleksandr] Сергеевич [S.] Грязев [Gryazev]
  • Павел [Pavel] Сергеевич [S.] Капля [Kaplya]
  • Мартин [Martin] Коппен [Koeppen]
Keywords: invariant embedding method, hydrogen isotopes, electron spectroscopy

Abstract

The relative concentration of deuterium implanted in beryllium is determined on the basis of the elastic peak electron spectroscopy. To consistently determine the energy spectra of reflected electrons, the method of partial intensities is used, which is based on solving the boundary problem for the transport equation by the invariant imbedding method. The differential inelastic scattering cross sections are reconstructed using a fitting procedure based on the multiple solution of the direct problem with fitting parameters. High efficiency of the fitting procedure is achieved through constructing a numerical procedure for solving the equations for partial intensities, a technique that combines accuracy and extremely high computation speed. Differential cross sections of inelastic scattering are obtained both for the near-surface area and for a homogeneous area distant from the surface. The differential inelastic scattering cross sections have been calculated for both pure beryllium and beryllium samples subjected to deuterium implantation.

The relative concentrations of deuterium in beryllium have been determined, the values of which are equal to 0.12±0.03 (for a dose of 55 deuterium atoms per square Angstrom) and 0.15±0.03 (for a dose of 201 deuterium atoms per square Angstrom). The obtained results indicate that the developed method has made it possible to achieve an order of magnitude better sensitivity of determining the relative concentrations of hydrogen isotopes in compounds in comparison with the previously existing methods.

Information about authors

Виктор [Viktor] Петрович [P.] Афанасьев [Afanas’ev]

Dr.Sci. (Phys.-Math.), Professor of General Physics and Nuclear Fusion Dept., NRU MPEI, e-mail: v.af@mail.ru

Юлия [Yuliya] Николаевна [N.] Бодиско [Bodisko]

Ph.D-student of General Physics and Nuclear Fusion Dept., NRU MPEI, e-mail: BodiskoYN@yandex.ru

Александр [Aleksandr] Сергеевич [S.] Грязев [Gryazev]

Ph.D. (Phys.-Math.), Engineer NEIL EM and RFE of General Physics and Nuclear Fusion Dept., NRU MPEI, e-mail: GryazevAS@gmail.com

Павел [Pavel] Сергеевич [S.] Капля [Kaplya]

Ph.D. (Phys.-Math.), Yandex, e-mail: pavel@kaplya.com

Мартин [Martin] Коппен [Koeppen]

Dr.Sci. (Phys.-Math.), Professor, Research Associate at the Julich Research Center, Berlin, Germany

References

1. Афанасьев В.П. Федорович С.Д., Лубенченко А.В. Измерение послойных профилей азота, имплантированного в ниобий на основе спектроскопии отраженных электронов // Письма ЖТФ. 1995. Т. 21. № 10. С. 85—88.
2. Boersch H., Wolter R., Schoenebeck H. Elastische Energieverluste Kristallgestreuter Elektronen // Zeitschrift fur Phys. 1967. V. 199. Pp. 124—134.
3. Gergely G. Elastic Peak Electron Spectroscopy for Auger Electron Spectroscopy and Electron Energy Loss Spectoscopy // Surf. Interface Anal. 1981. V. 3. Pp. 201—204.
4. Gergerly G. Elastic Backscattering of Electrons: Determination of Physical Parameters of Electron Transport Processes by Elastic Peak Electron Spectroscopy // Prog. Surf. Sci. 2002. V. 71. Pp. 31—88.
5. Vos M. Detection of Hydrogen by Electron Rutherford Backscattering // Ultramicroscopy. 2002. V. 92. Pp. 143—149.
6. Vos M. e. a. Electron and Neutron Scattering From Polymer Films at High Momentum Transfer // Nucl. Instr. Meth. Phys. Res. B 2005. V. 227. Pp. 233—250.
7. Vos M. Experimental Observation of the Strong Influence of Crystal Orientation on Electron Rutherford Backscattering Spectra // Phys. Rev. A. 2002. V. 65. P. 12703.
8. Went M.R., Vos M. High-resolution Study of Quasi-elastic Electron Scattering from a Two-layer System // Surface Sci. 2006. V. 600. Pp. 2070—2078.
9. Афанасьев В.П., Афанасьев М.В., Лисов А.А., Лубенченко А.В. Измерение состава изотопного водорода в углеродных материалах на основе спектроскопии пиков упругорассеянных электронов // ЖТФ. 2009. Т. 79. Вып. 11. С. 106—112.
10. Riko V. e. a. Determination of the Hydrogen Content in Diamond-like Carbon and Polymeric Thin Films by Reflection Electron Energy Loss Spectroscopy // Diamond and Related Materials. 2007. V. 16 (1). Pp. 107—111.
11. Yubero F. e. a. Quantification of the H Content in Diamondlike Carbon and Polymeric Thin Films by Reflection Electron Energy Loss Spectroscopy // Appl. Phys. Lett. 2005. V. 87 (8). P. 084101.
12. Yubero F, Tokeshi K. Identification of Hydrogen and Deuterium at the Durface of Water Ice by Reflection Electron Energy Loss Spectroscopy // Appl. Phys Lett. 2009. V. 95 (8). P. 084101.
13. Sulyok A. е. a. Recoil Effect in Carbon Structures and Polymers // Vacuum. 2001. V. 63. Pp. 371—376.
14. Orosz G.T. е. a. Hydrogen and Surface Excitation in Electron Spectra of Polyethylene // Surface Sci. 2004. V. 566—568. Pp. 544—548.
15. Kostanovskiy I.A., Afanas'ev V.P., Naujoks D., Mayer M. Hydrocarbon Isotope Detection by Elastic Peak Electron Spectroscopy // J. Electron Spectroscopy and Related Phenomena. 2015. V. 202. Pp. 22—25.
16. Afanasev V.P. e. a. Determination of Atomic Hydrogen in Hydrocarbons by Means of the Reflected Electron Energy Loss Spectroscopy and the X-Ray Photoelectron Spectroscopy // J. Phys.: Conf. Series. 2016. V. 748. P. 012005.
17. Werner W.S.M. Simulation and Quantitative Interpretation of Electron Spectra for Surface Analysis // Surf. Interface Anal. 2005. V. 37. Pp. 846—852.
18. Afanas’ev V.P., Naujoks D. Ruckstreuung Schneller Electronen // Z. Phys. B. Cond. Mat. 1991. V. 84. Pp. 397—402.
19. Афанасьев В.П. Капля П.С. Теория формирования энергетических спектров отраженных заряженных частиц // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015. № 7. С. 66—71.
20. Afanas’ev V.P. e. a. Photoelectron Spectra of Finite-thickness Layers // J. Vacuum Sci.&Tech. B. 2015. V. 33. P. 03D101.
21. Salvat F., Jablonski A., Powel C.J. Dirac Partial-wave Calculation of Elastic Scattering of Electrons and Positrons by Atoms, Positive Ions and Molecules // Phys. Commun. 2005. V. 165. Pp. 157—190.
22. Powell C.J., Jablonski A. NIST Electron Inelastic-mean-free-path Database. Vers. 1.2. National Institute of Standards and Technology, Gaithersburg, 2010.
23. Afanas’ev V.P., Kaplya P.S. Transmission Function: Effect of «Brightness-body Rotation» // J. Surface Investigation: X-ray, Synchrotron and Neutron Techn. 2017. V. 11. No. 6. Pp. 1296—1305.
24. Werner W., Glantschnig K., Ambrosch-Draxl C. Optical Constants and Inelastic Electron-scattering Data for 17 Elemental Metals // J. Phys. Chem. Ref. Data. 2009. V. 38. Pp. 1013—1092.
25. Афанасьев В.П., Капля П.С., Лисицына Е.Д. Малоугловое приближение и модель Освальда–Каспера–Гауклера в задачах отражения электронов от твердых тел // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2016. № 3. C. 66—71.
26. Afanas`ev V.P. e.a. Influence of Multiple Elastic Scattering on the Shape of the Elastically Scattered Electron Peak // J. Electron Spectroscopy and Related Phenomena. 2010. V. 177. Pp. 35—41.
27. Алимов В.Х. Использование ионных пучков для изучения накопления изотопов водорода в плазмоконтактирующих материалах установок термоядерного синтеза // Взаимодействие водорода с конструкционными материалами. Методы исследования: Сборник трудов II Междунар. школы молодых ученых и специалистов. Саров: Российский Федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, 2006. C. 105—108.
---
Для цитирования: Афанасьев В.П., Бодиско Ю.Н., Грязев А.С., Капля П.С., Коппен М. Определение относительной концентрации дейтерия, имплантированного в бериллий, на основе спектроскопии пиков упругоотраженных электронов // Вестник МЭИ. 2020. № 5. С. 89—97. DOI: 10.24160/1993-6982-2020-5-89-97.
#
1. Afanas'ev V.P. Fedorovich S.D., Lubenchenko A.V. Izmerenie Posloynykh Profiley Azota, Implantirovannogo v Niobiy na Osnove Spektroskopii Otrazhennykh Elektronov. Pis'ma ZHTF. 1995;21;10:85—88. (in Russian).
2. Boersch H., Wolter R., Schoenebeck H. Elastische Energieverluste Kristallgestreuter Elektronen.Zeitschrift fur Phys. 1967;199:124—134.
3. Gergely G. Elastic Peak Electron Spectroscopy for Auger Electron Spectroscopy and Electron Energy Loss Spectoscopy. Surf. Interface Anal. 1981;3:201—204.
4. Gergerly G. Elastic Backscattering of Electrons: Determination of Physical Parameters of Electron Transport Processes by Elastic Peak Electron Spectroscopy. Prog. Surf. Sci. 2002;71:31—88.
5. Vos M. Detection of Hydrogen by Electron Rutherford Backscattering. Ultramicroscopy. 2002;92:143—149.
6. Vos M. e. a. Electron and Neutron Scattering From Polymer Films at High Momentum Transfer. Nucl. Instr. Meth. Phys. Res. B 2005;227:233—250.
7. Vos M. Experimental Observation of the Strong Influence of Crystal Orientation on Electron Rutherford Backscattering Spectra. Phys. Rev. A. 2002;65:12703.
8. Went M.R., Vos M. High-resolution Study of Quasi-elastic Electron Scattering from a Two-layer System. Surface Sci. 2006;600:2070—2078.
9. Afanas'ev V.P., Afanas'ev M.V., Lisov A.A., Lubenchenko A.V. Izmerenie Sostava Izotopnogo Vodoroda v Uglerodnykh Materialakh na Osnove Spektroskopii Pikov Uprugorasseyannykh Elektronov. ZHTF. 2009;79;11:106—112. (in Russian).
10. Riko V. e. a. Determination of the Hydrogen Content in Diamond-like Carbon and Polymeric Thin Films by Reflection Electron Energy Loss Spectroscopy. Diamond and Related Materials. 2007;16 (1):107—111.
11. Yubero F. e. a. Quantification of the H Content in Diamondlike Carbon and Polymeric Thin Films by Reflection Electron Energy Loss Spectroscopy. Appl. Phys. Lett. 2005;87 (8):084101.
12. Yubero F, Tokeshi K. Identification of Hydrogen and Deuterium at the Durface of Water Ice by Reflection Electron Energy Loss Spectroscopy. Appl. Phys Lett. 2009;95 (8):084101.
13. Sulyok A. e. a. Recoil Effect in Carbon Structures and Polymers. Vacuum. 2001; 63:371—376.
14. Orosz G.T. e. a. Hydrogen and Surface Excitation in Electron Spectra of Polyethylene. Surface Sci. 2004;566—568:544—548.
15. Kostanovskiy I.A., Afanas'ev V.P., Naujoks D., Mayer M. Hydrocarbon Isotope Detection by Elastic Peak Electron Spectroscopy. J. Electron Spectroscopy and Related Phenomena. 2015;202:22—25.
16. Afanasev V.P. e. a. Determination of Atomic Hydrogen in Hydrocarbons by Means of the Reflected Electron Energy Loss Spectroscopy and the X-Ray Photoelectron Spectroscopy. J. Phys.: Conf. Series. 2016;748:012005.
17. Werner W.S.M. Simulation and Quantitative Interpretation of Electron Spectra for Surface Analysis. Surf. Interface Anal. 2005;37:846—852.
18. Afanas’ev V.P., Naujoks D. Ruckstreuung Schneller Electronen. Z. Phys. B. Cond. Mat. 1991;84:397—402.
19. Afanas'ev V.P. Kaplya P.S. Teoriya Formirovaniya Energeticheskikh Spektrov Otrazhennykh Zaryazhennykh Chastits. Poverkhnost'. Rentgenovskie, Sinkhrotronnye i Neytronnye Issledovaniya. 2015;7:66—71. (in Russian).
20. Afanas’ev V.P. e. a. Photoelectron Spectra of Finite-thickness Layers. J. Vacuum Sci.&Tech. B. 2015;33:03D101.
21. Salvat F., Jablonski A., Powel C.J. Dirac Partial-wave Calculation of Elastic Scattering of Electrons and Positrons by Atoms, Positive Ions and Molecules. Phys. Commun. 2005;165:157—190.
22. Powell C.J., Jablonski A. NIST Electron Inelastic-mean-free-path Database. Vers. 1.2. National Institute of Standards and Technology, Gaithersburg, 2010.
23. Afanas’ev V.P., Kaplya P.S. Transmission Function: Effect of «Brightness-body Rotation». J. Surface Investigation: X-ray, Synchrotron and Neutron Techn. 2017;11;6:1296—1305.
24. Werner W., Glantschnig K., Ambrosch-Draxl C. Optical Constants and Inelastic Electron-scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data. 2009;38:1013—1092.
25. Afanas'ev V.P., Kaplya P.S., Lisitsyna E.D. Malouglovoe Priblizhenie i Model' Osval'da–Kaspera–Gauklera v Zadachakh Otrazheniya Elektronov ot Tverdykh Tel. Poverkhnost'. Rentgenovskie, Sinkhrotronnye i Neytronnye Issledovaniya. 2016;3:66—71. (in Russian).
26. Afanas`ev V.P. e.a. Influence of Multiple Elastic Scattering on the Shape of the Elastically Scattered Electron Peak. J. Electron Spectroscopy and Related Phenomena. 2010;177:35—41.
27. Alimov V.Kh. Ispol'zovanie Ionnykh Puchkov dlya Izucheniya Nakopleniya Izotopov Vodoroda v Plazmokontaktiruyushchikh Materialakh Ustanovok Termoyadernogo Sinteza. Vzaimodeystvie Vodoroda s Konstruktsionnymi Materialami. Metody Issledovaniya: Sbornik Trudov II Mezhdunar. Shkoly Molodykh Uchenykh i Spetsialistov. Sarov: Rossiyskiy Federal'nyy Yadernyy Tsentr — Vserossiyskiy Nauchno-issledovatel'skiy Institut Eksperimental'noy Fiziki, 2006:105—108. (in Russian).
---
For citation: Afanas’ev V.P., Bodisko Yu.N., Gryazev A.S., Kaplya P.S., Koeppen M. Determining the Relative Concentration of Deuterium Implanted in Beryllium Based on the Elastic Peak Electron Spectroscopy. Bulletin of MPEI. 2020;5:89—97. (in Russian). DOI: 10.24160/1993-6982-2020-5-89-97.
Published
2019-07-23
Section
Nuclear Power Plants, Including Design, Operation and Decommissioning (05.14.03)