Inductor and Plasma Characteristics of Ferrite-Free Inductively-сoupled Amalgam Ultraviolet Lamps with Closed-loop Small Diameter Discharge Tubes

  • Олег [Oleg] Алексеевич [A.] Попов [Popov]
  • Павел [Pavel] Валерьевич [V.] Старшинов [Starshinov]
  • Римма [Rimma] Анваровна [A.] Иликеева [Ilikeeva]
  • Дарья [Darya] Александровна [A.] Буреева [Bureeva]
  • Игорь [Igor] Вячеславович [V.] Ирхин [Irkhin]
  • Владимир [Vladimir] Александрович [A.] Левченко [Levchenko]
Keywords: inductively-coupled ferrite-free discharge, low-pressure mercury plasma, ultraviolet radiation, induction coil

Abstract

The electrical and radiation characteristics of innovative high-efficient 254-nm wavelength ultraviolet (UV) radiation sources employing ferrite-free inductively-coupled low-pressure discharges excited in closed-loop quartz tubes are experimentally studied. The discharge was excited using a 3-turn induction coil at a frequency of 1.7 MHz and lamp power equal to 90-160 W in a mixture of mercury vapor at a pressure of around 0.01 mmHg and buffer gas (Ar, a mixture of 30%Ne+70%Ar) at pressures of 0.7 and 1.0 mmHg in a closed tube 16.6 mm in diameter and 815 mm long. The coil turns made of multiconductor wire (Litz wire) with a low per unit length resistivity of 0.00014 Ωm/cm and 1.5 mm in diameter were arranged over the discharge tube perimeter. It was found that, as the lamp power was increased, the power loss in the induction coil wire decreased from 7-9 to 3-4 W, and the coil efficiency increased from 92 to 98%. In lamps filled with buffer gas at a pressure of 1.0 mmHg, the maximal plasma UV radiation generation efficiencies equal to 68% and 66%, respectively, were achieved at plasma power levels of 105-155 W. The decrease of buffer gas pressure to 0.7 mmHg entails a drop of lamp UV radiation generation efficiency by 10-20% and a shift of its maximum values to the zone of lower plasma power values.

Information about authors

Олег [Oleg] Алексеевич [A.] Попов [Popov]

Dr.Sci. (Techn.), Professor of Lighting Engineering Dept., NRU MPEI, e-mail: popovoleg445@yahoo.com

Павел [Pavel] Валерьевич [V.] Старшинов [Starshinov]

Ph.D.-student of Lighting Engineering Dept., NRU MPEI, e-mail: blitzzz-z@ya.ru

Римма [Rimma] Анваровна [A.] Иликеева [Ilikeeva]

Ph.D.-student of Lighting Engineering Dept., NRU MPEI

Дарья [Darya] Александровна [A.] Буреева [Bureeva]

Technical Specialist of BELL Group

Игорь [Igor] Вячеславович [V.] Ирхин [Irkhin]

Ph.D. (Techn.), Leading Engineer of All-Russian electrotechnical Institute — branch of the Russian Federal Nuclear Center — all-Russian Scientific Research Institute of Technical Physics Academician E.I. Zababakhin

Владимир [Vladimir] Александрович [A.] Левченко [Levchenko]

Ph.D. (Phys.-Math.), Deputy Head of the Laboratory of Open Company «LIT», Moscow

References

1. Shaffer J.W., Godyak V.A. The Development оf Low Frequency, High Output Electrodeless Fluorescent Lamp // J. Ill. Eng. Soc. 2013. V. 28 (1). Pp. 142—145.
2. Popov O.A., Chandler R.T. Ferrite-free High Power Electrodeless Fluorescent Lamp Operated at a Frequency of 160…1000 kHz // Plasma Sources Sci. and Technol. 2002. V. 11. Pp. 218—227.
3. Гвоздев-Карелин С.В. Особенности и примеры применения безэлектродной люминесцентной лампы Endura фирмы Оsram // Светотехника. 2006. № 3. С. 9—12.
4. Kobayashi S., Hatano A. High-intensity Low-pressure Electrodeless Mercury-argon Lamp for UV Disinfection of Wastewater // Journal Water and Environment Technol. 2005. V. 3. No. 1. Pp. 71—76.
5. Isupov M.V., Krotov S.V., Litvintzev A.Y., Ulanov I.M. An Induction UV Lamp // Light and Eng. 2008. V. 16. No. 1. Pp. 67—71.
6. Levchenko V.A., Popov O.A., Svitnev S.A., Starshinov P.V. Experimental Research into the Electrical and Optical Characteristics of Electrodeless UV Lamps of the Transformer Type // Light and Eng. 2015. V. 23. No. 1. Pp. 60—64.
7. Levchenko V.A., Popov O.A., Svitnev C.A., Starshinov P.V. Electrical and Radiation Characteristics of a Transformer Type Lamp with a Discharge Tube of 16.6 mm Diameter // Light and Eng. 2016. V. 24. No. 2. Pp. 77—81.
8. Свитнев С.А. и др. Характеристики бесферритного индукционного разряда низкого давления. Ч. 2. Излучательные характеристики плазмы // УПФ. 2016. № 4. С. 372—384.
9. Ультрафиолетовые технологии в современном мире / под ред. Кармазинова Ф.В., Костюченко С.В., Кудрявцева Н.Н., Храменкова С.В. Долгопрудный: Издат. дом «Интеллект», 2012.
10. Попов О.А., Старшинов П.В., Васина В.Н. Исследование характеристик индукционного бесферритного ртутного разряда низкого давления в замкнутой трубке // Вестник МЭИ. 2018. № 4. C. 89—96.
11. Старшинов П.В., Попов О.А., Ирхин И.В., Васина В.Н., Левченко В.А. Электрические и излучательные характеристики индуктивных бесферритных ртутных УФ-ламп в замкнутых трубках // Вестник МЭИ. 2019. № 3. С. 87—97.
12. Райзер Ю.П. Физика газового разряда. М.: Наука, 1987.
13. Piejak R.B., Godyak V.A., Alexandrovich B.M. А Simple Analyses of an
Inductive RF Discharge // Plasma Sources Sci. Technol. 1992. No. 1. Pp. 179—185.
14. Gudmundsson J.T., Lieberman M.A. Magnetic Induction and Plasma
Impedance in a Cylindrical Inductive Discharge // Plasma Sources Sci. Technol. 1997. No. 4. Pp. 540—550.
15. Рохлин Г.Н. Разрядные источники света. М.: Энергоатомиздат, 1991.
16. Свитнев С.А., Попов О.А., Левченко В.А., Старшинов П.В. Характеристики бесферритного индукционного разряда низкого давления. Ч. 1. Электрические параметры индуктивной катушки // УПФ. 2016. № 2. С. 139—149.
17. Попов О.А. Исследование влияния давления инертного газа на характеристики индукционных люминесцентных ламп // Вестник МЭИ. 2013. № 3. С. 76—84.
18. Popov O.A., Chandler R.T., Maya J. Compact Inductively-coupled fluorescent Lamp Operated at Frequencies of 100…200 kHz // Light & Eng. 2007. V. 15. No. 1. Pp. 68—72.
19. Lovlya E.V., Popov O.A. Power Losses in RF Inductor of Ferrite-free Closed-loop Inductively-coupled Low Mercury Pressure Lamps // Light and Eng. 2020. V. 28. No. 2. Pp. 89—94.
---
Для цитирования: Попов О.А., Старшинов П.В., Иликеева Р.А., Буреева Д.А., Ирхин И.В., Левченко В.А. Характеристики индуктора и плазмы бесферритных индукционных амальгамных ультрафиолетовых ламп с замкнутыми трубками малого диаметра // Вестник МЭИ. 2020. № 5. С. 98—111. DOI: 10.24160/1993-6982-2020-5-98-111.
#
1. Shaffer J.W., Godyak V.A. The Development of Low Frequency, High Output Electrodeless Fluorescent Lamp. J. Ill. Eng. Soc. 2013;28 (1):142—145.
2. Popov O.A., Chandler R.T. Ferrite-free High Power Electrodeless Fluorescent Lamp Operated at a Frequency of 160…1000 kHz. Plasma Sources Sci. and Technol. 2002;11:218—227.
3. Gvozdev-Karelin S.V. Osobennosti i Primery Primeneniya Bezelektrodnoy Lyuminestsentnoy Lampy Endura Firmy Osram. Svetotekhnika. 2006;3:9—12. (in Russian).
4. Kobayashi S., Hatano A. High-intensity Low-pressure Electrodeless Mercury-argon Lamp for UV Disinfection of Wastewater. Journal Water and Environment Technol. 2005;3;1:71—76.
5. Isupov M.V., Krotov S.V., Litvintzev A.Y., Ulanov I.M. An Induction UV Lamp. Light and Eng. 2008;16;1:67—71.
6. Levchenko V.A., Popov O.A., Svitnev S.A., Starshinov P.V. Experimental Research into the Electrical and Optical Characteristics of Electrodeless UV Lamps of the Transformer Type. Light and Eng. 2015;23;1:60—64.
7. Levchenko V.A., Popov O.A., Svitnev C.A., Starshinov P.V. Electrical and Radiation Characteristics of a Transformer Type Lamp with a Discharge Tube of 16.6 mm Diameter. Light and Eng. 2016;24;2:77—81.
8. Svitnev S.A. i dr. Kharakteristiki Besferritnogo Induktsionnogo Razryada Nizkogo Davleniya. Ch. 2. Izluchatel'nye Kharakteristiki Plazmy. UPF. 2016;4:372—384. (in Russian).
9. Ul'trafioletovye Tekhnologii v Sovremennom Mire. Pod Red. Karmazinova F.V., Kostyuchenko S.V., Kudryavtseva N.N., Khramenkova S.V. Dolgoprudnyy: Izdat. Dom «Intellekt», 2012. (in Russian).
10. Popov O.A., Starshinov P.V., Vasina V.N. Issledovanie Kharakteristik Ninduktsionnogo Besferritnogo Rtutnogo Razryada Nizkogo Davleniya v Zamknutoy Trubke. Vestnik MEI. 2018;4:89—96. (in Russian).
11. Starshinov P.V., Popov O.A., Irkhin I.V., Vasina V.N., Levchenko V.A. Elektricheskie i Izluchatel'nye Kharakteristiki Induktivnykh Besferritnykh Rtutnykh UF-lamp v Zamknutykh Trubkakh. Vestnik MEI. 2019;3:87—97. (in Russian).
12. Rayzer YU.P. Fizika Gazovogo Razryada. M.: Nauka, 1987. (in Russian).
13. Piejak R.B., Godyak V.A., Alexandrovich B.M. A Simple Analyses of an Inductive RF Discharge. Plasma Sources Sci. Technol. 1992;1:179—185.
14. Gudmundsson J.T., Lieberman M.A. Magnetic Induction and Plasma Impedance in a Cylindrical Inductive Discharge. Plasma Sources Sci. Technol. 1997;4:540—550.
15. Rokhlin G.N. Razryadnye Istochniki Sveta. M.: Energoatomizdat, 1991.
16. Svitnev S.A., Popov O.A., Levchenko V.A., Starshinov P.V. Kharakteristiki Besferritnogo Induktsionnogo Razryada Nizkogo Davleniya. Ch. 1. Elektricheskie Parametry Induktivnoy Katushki. UPF. 2016;2. S. 139—149. (in Russian).
17. Popov O.A. Issledovanie Vliyaniya Davleniya Inertnogo Gaza na Kharakteristiki Induktsionnykh Lyuminestsentnykh Lamp. Vestnik MEI. 2013;3:76—84. (in Russian).
18. Popov O.A., Chandler R.T., Maya J. Compact Inductively-coupled fluorescent Lamp Operated at Frequencies of 100…200 kHz. Light & Eng. 2007;15;1:68—72.
19. Lovlya E.V., Popov O.A. Power Losses in RF Inductor of Ferrite-free Closed-loop Inductively-coupled Low Mercury Pressure Lamps. Light and Eng. 2020;28;2:89—94.
---
For citation: Popov O.A., Starshinov P.V., Ilikeeva R.A., Bureeva D.A., Irkhin I.V., Levchenko V.A. Inductor and Plasma Characteristics of Ferrite-Free Inductively-сoupled Amalgam Ultraviolet Lamps with Closed-Loop Small Diameter Discharge Tubes. Bulletin of MPEI. 2020;5:98—111. (in Russian). DOI: 10.24160/1993-6982-2020-5-98-111.
Published
2019-12-13
Section
Lighting Engineering (05.09.07)