Evaluating the Possibility to Implement Autonomous Power Supply from a Hydrogenerator as Applied to Dispatching Systems for Housing and Utility Services

  • Георгий [Georgiy] Геннадьевич [G.] Ильин [Ilyin]
Keywords: water flow modeling, hydrogenerator, autonomous dispatch control system, urban water supply system

Abstract

Currently, we are witnessing active development of urban building construction, which dictates new requirements for the infrastructure of water supply and sanitation. These requirements are aimed at improving the reliability and compliance with stringent environmental standards. Dispatch supervision and control of water supply networks are among the key tasks that have to be solved under such conditions. The problem of implementing such systems lies in difficulty of setting up power supply to the equipment used in these systems. The power supply of such systems is as a rule provided by using storage batteries, which entails the need for periodic maintenance of these systems and thereby increases the cost of their operation. The problem can be solved by using an autonomous source of electricity. The energy of the water flow in the pipeline is proposed to be used as such source.

The possibility of setting up an autonomous dispatch control system for housing and utility services based on a hydrogenerator is estimated. The study is carried out by analyzing the hydraulic parameters of a bypass pipeline installed on a large-diameter pipeline. To determine the flow velocity and pressure in the bypass pipeline, the fluid flow is modeled in it. The modeling results and their subsequent analysis made it possible to calculate the range of power produced by the hydrogenerator and estimate the possibility of setting up an autonomous dispatch control system.

Information about author

Георгий [Georgiy] Геннадьевич [G.] Ильин [Ilyin]

Ph.D.-student of Electric Drives Dept., NRU MPEI, Design Engineer of LLC «AQUA+LLC», e-mail: gilin@aqua.plus.ru

References

1. Casini M. Harvesting Energy from In-pipe Hydro Systems at Urban and Building Scale // Intern. J. Smart Grid and Clean Energy. 2015. V. 4 (4). Pp. 316—327.
2. Hoffmann D. e. a. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications // J. Physics: Conf. Series. 2013. V. 476. P. 012104.
3. Андреев П. Гидроэлектростанция в системе городского водопровода // Энергетика и промышленность России. Новые технологии. 2017. № 20 (328). С. 34.
4. Зибров В.А., Тряпичкин С.А., Соколовская О.В. Пьезогенератор в устройстве структурного мониторинга водопроводных сетей // Инженерный вестник Дона. 2013. № 4. С. 57—65.
5. Сапронов А.А., Зибров В.А., Занина И.А., Соколовская О.В., Тряпичкин С.А. Пьезоэлектрический генератор в устройстве мониторинга водопровода // Энергоснабжение и водоподготовка. 2012. № 5 (79). С. 42—44.
6. Шостаковский П. Современные термоэлектрические источники питания электронных устройств // Компоненты и технологии. Блоки питания. 2015. № 1. С. 92—97.
7. Виноградов В.С., Халыков К.Р. Использование термоэлектрических генераторов в судовых энергетических установках, как устройств прямого преобразования тепловой энергии в электрическую // Вестник АГТУ. Серия «Морская техника и технология». 2014. № 4. С. 48—56.
---
Для цитирования: Ильин Г.Г. Оценка возможности реализации автономного электроснабжения от гидрогенератора применительно к системам диспетчеризации объектов жилищно-коммунального хозяйства // Вестник МЭИ. 2020. № 6. С. 67—75. DOI: 10.24160/1993-6982-2020-6-67-75.
#
1. Casini M. Harvesting Energy from In-pipe Hydro Systems at Urban and Building Scale. Intern. J. Smart Grid and Clean Energy. 2015;4 (4):316—327.
2. Hoffmann D. e. a. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications. J. Physics: Conf. Series. 2013;476:012104.
3. Andreev P. Gidroelektrostantsiya v Sisteme Gorodskogo Vodoprovoda. Energetika i Promyshlennost' Rossii. Novye Tekhnologii. 2017;20 (328):34. (in Russian).
4. Zibrov V.A., Tryapichkin S.A., Sokolovskaya O.V. P'ezogenerator v Ustroystve Strukturnogo Monitoringa Vodoprovodnykh Setey. Inzhenernyy Vestnik Dona. 2013;4:57—65. (in Russian).
5. Sapronov A.A., Zibrov V.A., Zanina I.A., Sokolovskaya O.V., Tryapichkin S.A. P'ezoelektricheskiy Generator v Ustroystve Monitoringa Vodoprovoda. Energosnabzhenie i Vodopodgotovka. 2012;5 (79):42—44. (in Russian).
6. Shostakovskiy P. Sovremennye Termoelektricheskie Istochniki Pitaniya Elektronnykh Ustroystv. Komponenty i Tekhnologii. Bloki Pitaniya. 2015;1:92—97. (in Russian).
7. Vinogradov V.S., Khalykov K.R. Ispol'zovanie Termoelektricheskikh Generatorov v Sudovykh Energeticheskikh Ustanovkakh, kak Ustroystv Pryamogo Preobrazovaniya Teplovoy Energii v Elektricheskuyu. Vestnik AGTU. Seriya «Morskaya Tekhnika i Tekhnologiya». 2014;4:48—56. (in Russian).
---
For citation: Ilyin G.G. Evaluating the Possibility to Implement Autonomous Power Supply from a Hydrogenerator as Applied to Dispatching Systems for Housing and Utility Services. Bulletin of MPEI. 2020;6:67—75. (in Russian). DOI: 10.24160/1993-6982-2020-6-67-75.
Published
2020-02-06
Section
Electrical Complex and Systems (05.09.03)