Computer-Aided Analysis of Unbalanced Operating Conditions in Three-Phase Circuits Containing a Dynamic Load
Abstract
A new approach to analyzing three-phase circuits in the phase coordinates under unbalanced normal and emergency operating conditions is proposed, in which the information about the three-phase circuit to be analyzed by means of software is entered in a simplified manner. The equivalent circuits of three-phase generators, power lines, and static and dynamic loads are aggregated and considered in a generalized form. With such presentation, the work with a three-phase circuit diagram is significantly simplified even if it contains unbalanced loads, a few faulty sections, and control links in the equivalent circuits of electrical machines. The labeling of three-phase circuit nodes is proposed that allows three-phase and single-phase parts of the circuit to be distinguished. The topologic list of branches intended for computer-aided calculations of currents and voltages and currents is compiled for three-phase branches in a generalized form. The obtained list is compact and retains a clear representation of the three-phase circuit. The analogy between the basic electrical equations written for electrical circuit three-phase and single-phase branches is shown. Thus, the voltages and currents in a three-phase element are interrelated by equations similar to the generalized Ohm’s law, while Kirchhoff's current law is written for three-phase nodes and has the same form as for single-phase circuits. The analogy of drawing up the incidence matrix and the matrix of nodal equations is shown. Submatrices of dimensions 3 × 3, 1 × 3, or 1 × 1 depending on the node label appear as entries in the incidence matrices and nodal admittance matrices of a three-phase circuit. The nodal equations used for carrying out the subsequent analysis of the circuit in the phase coordinates are written in a standard way as in single-phase circuits. In analyzing emergency operating conditions, it is proposed to keep the simplicity and clarity of the approach by representing the circuit faulty section of as a corresponding branch embedded into the three-phase circuit. The developed approach is illustrated by calculation of unbalanced and emergency operating conditions in a complex three-phase unbalanced circuit containing two synchronous generators, one dynamic load, and one static load. The calculation has been carried for four- and three-wire three-phase circuits.
References
2. Шакиров М.А., Медведев К.А. Построение системных Y-схем замещения синхронных генераторов прямым учетом их свойств невзаимности // Высокие интеллектуальные технологии и инновации в национальных исследовательских университетах: Материалы Междунар. науч.-метод. конф. СПБ.: Изд-во Санкт-Петербургского политехн. ун- та, 2014. С. 72—75.
3. Гусейнов А.М., Ибрагимов Ф.Ш. Расчет в фазных координатах несимметричных установившихся и переходных режимов в сложных электроэнергетических системах // Электричество. 2012. № 5. С. 10—17.
4. Гусейнов А.М., Ибрагимов Ф.Ш. Расчет в фазных координатах несимметричных установившихся и переходных режимов в сложных электроэнергетических системах // Электричество. 2012. № 7. С. 23—34.
5. Chen T.H. е. a. Three-phase Cogenerator and Transformer Models for Distribution System Analysis // IEEE Trans. Power Delivery. 1991. V. 6. No. 4. Pp. 1671—1681.
6. Jereminov M. е. a. An Equivalent Circuit Formulation for Three-phase Power Flow Analysis of Distribution Systems // Proc. Transmission and Distribution Conf. and Exposition. 2016. Pp. 1—5.
7. Солдатов В.А., Попов Н.М. Моделирование сложных видов несимметрии в распределительных сетях 10 кВ методом фазных координат // Электротехника. 2003. № 10. С. 35—39.
8. Teng J.-H. A Network-topology-based Three-phase Load Flow for Distribution Systems // Proc. National Sci. Council ROC (A). 2000. V. 24. No. 4. Pp. 259—264.
9. Garcia P.A.N. e. a. Three-phase Power Flow Calculations Using the Current Injection Method // IEEE Trans. Power Syst. 2000. V. 15. No. 2. Pp. 508—514.
10. Monfared M., Daryani A.M., Abedi M. Three-phase Asymmetrical Load Flow for Four-wire distribution Networks // Proc. IEEE PES Power Syst. Conf. and Exposition. 2006. Pp. 1899—1903.
11. De Vas Gunawardena A.P.S.G. e. a. Three-phase Asymmetrical Power Flow Algorithm using Current Injection Technique // IEEE Electrical Eng. Conf. 2016. Pp. 37—42.
---
Для цитирования: Васьковская Т.А., Жохова М.П., Рослова К.С. Машинный расчет несимметричных режимов трехфазных цепей с динамической нагрузкой // Вестник МЭИ. 2021. № 1.
#
1. Praktikum po TOE. Ch. 1. Pod Red. M.A. Shakirova. SPB.: Izd-vo Sankt-Peterburgskogo Politekhn. Un- ta, 2006:252. (in Russian).
2. Shakirov M.A., Medvedev K.A. Postroenie Sistemnykh Y-skhem Zameshcheniya Sinkhronnykh Generatorov Pryamym Uchetom ikh Svoystv Nevzaimnosti. Vysokie Intellektual'nye Tekhnologii i Innovatsii v Natsional'nykh Issledovatel'skikh Universitetakh: Materialy Mezhdunar. Nauch.-metod. Konf. SPB.: Izd-vo Sankt-Peterburgskogo Politekhn. Un- ta, 2014:72—75. (in Russian).
3. Guseynov A.M., Ibragimov F.Sh. Raschet v Faznykh Koordinatakh Nesimmetrichnykh Ustanovivshikhsya i Perekhodnykh Rezhimov v Slozhnykh Elektroenergeticheskikh Sistemakh. Elektrichestvo. 2012;5:10—17. (in Russian).
4. Guseynov A.M., Ibragimov F.Sh. Raschet v Faznykh Koordinatakh Nesimmetrichnykh Ustanovivshikhsya i Perekhodnykh Rezhimov v Slozhnykh Elektroenergeticheskikh Sistemakh. Elektrichestvo. 2012;7:23—34. (in Russian).
5. Chen T.H. e. a. Three-phase Cogenerator and Transformer Models for Distribution System Analysis. IEEE Trans. Power Delivery. 1991;6;4:1671—1681.
6. Jereminov M. e. a. An Equivalent Circuit Formulation for Three-phase Power Flow Analysis of Distribution Systems. Proc. Transmission and Distribution Conf. and Exposition. 2016:1—5.
7. Soldatov V.A., Popov N.M. Modelirovanie Slozhnykh Vidov Nesimmetrii v Raspredelitel'nykh Setyakh 10 kV Metodom Faznykh Koordina. Elektrotekhnika. 2003;10:35—39. (in Russian).
8. Teng J.-H. A Network-topology-based Three-phase Load Flow for Distribution Systems // Proc. National Sci. Council ROC (A). 2000;24;4:259—264. (in Russian).
9. Garcia P.A.N. e. a. Three-phase Power Flow Calculations Using the Current Injection Method. IEEE Trans. Power Syst. 2000;15;2:508—514.
10. Monfared M., Daryani A.M., Abedi M. Three-phase Asymmetrical Load Flow for Four-wire distribution Networks. Proc. IEEE PES Power Syst. Conf. and Exposition. 2006:1899—1903.
11. De Vas Gunawardena A.P.S.G. e. a. Three-phase Asymmetrical Power Flow Algorithm using Current Injection Technique. IEEE Electrical Eng. Conf. 2016:37—42.
---
For citation: Vaskovskaya T.A., Zhokhova M.P., Roslova K.S. Computer-Aided Analysis of Unbalanced Operating Conditions in Three-Phase Circuits Containing a Dynamic Load. Bulletin of MPEI. 2021;1:62—69. (in Russian).