Three-Phase and Five-Phase Motor Windings Common Point Potential Ripple with Respect to the Converter Zero Terminal

  • Владимир [Vladimir] Михайлович [M.] Терешкин [Tereshkin]
  • Иршат [Irshat] Лутфуллович [L.] Аитов [Aitov]
  • Дмитрий [Dmitriy] Анатольевич [A.] Гришин [Grishin]
  • Вячеслав [Vyacheslav] Владимирович [V.] Терешкин [Tereshkin]
Keywords: rotating-field motor five-phase winding, ripple of the five-phase motor winding's common point potential, space-time voltage vector amplitude modulation, electromagnetically induced vibration

Abstract

The aim of the study is to determine the parameters characterizing the ripple of a motor's three- and five-phase windings common point potentials (for the star winding connection diagram) with respect to the converter zero point.

One of the reserves for decreasing electromagnetically induced vibration of an electric motor with a rotating field is to increase the number of working winding phases. The study subject is a five-phase motor winding connected to a bridge converter, namely, its ability to reduce electromagnetically induced vibration in comparison with that in using a three-phase winding. The common point potential ripple parameters are studied, and an approach is proposed to estimating the amplitude modulation of the space-time voltage vector of three- and five-phase windings under the influence of the common point potential ripple with respect to the converter zero point.

Theoretical studies were carried out using the Fourier series expansion method and vector analysis methods. To confirm the theoretical results, experimental studies of the prototypes of three-phase and five-phase synchronous motors with inductors made on the basis of permanent magnets were carried out.

The main results have shown the following. With increasing the number of phases of the rotating field motor working winding connected to a bridge converter, the common point potential ripple amplitude with respect to the converter zero point decreases, and the ripple frequency increases. The product of ripple amplitude by frequency remains unchanged. It is assumed that the common point potential ripple of the motor multiphase winding with respect to the converter zero terminal results in the amplitude modulation of the space-time voltage vector. With increasing the number of winding phases, the modulation amplitude decreases, and the modulation frequency increases.

A five-phase motor has a lower level of the working winding common point potential ripple with respect to the converter zero point in comparison with a three-phase motor. Thus, it can be assumed that there will be a lower level of electromagnetically induced vibration in using a simple converter operation algorithm. The obtained results can be used in designing electric traction systems with vector control on the basis of multiphase motors.

With increasing the number of phases, the common point potential ripple amplitude in a multiphase winding with respect to the converter zero point decreases, and the ripple frequency increases. Thus, the common point potential ripple amplitude in a five-phase winding is 5/3 times less than that in a three-phase winding, and the ripple frequency increases by 5/3 times, respectively. With increasing the number of working winding phases, the amplitude modulation of the resulting space-time voltage vector decreases. This circumstance has a positive effect on decreasing the electromagnetically induced vibration.

Information about authors

Владимир [Vladimir] Михайлович [M.] Терешкин [Tereshkin]

Ph.D. (Techn.), Assistant Professor of Electrical Engineers Dept., Ufa State Aviation Technical University, e-mail: tvm53@mail.ru

Иршат [Irshat] Лутфуллович [L.] Аитов [Aitov]

Ph.D. (Techn.), Assistant Professor of Information and Measurement Technology Dept., Ufa State Aviation Technical University, e-mail: aitov-irshat@mail.ru

Дмитрий [Dmitriy] Анатольевич [A.] Гришин [Grishin]

Lead Engineer of LLC «Gaz-Project-Engineering», e-mail: lowrat@mail.ru

Вячеслав [Vyacheslav] Владимирович [V.] Терешкин [Tereshkin]

Student of Electrical Engineers Dept., Ufa State Aviation Technical University, e-mail: stierishkin@mail.ru

References

1. Chan C.C. The State of the Art of Electric, Hybrid and Fuel Cell Vehicles // Proc IEEE. 2007. V. 95. No. 4. Pp. 704—718.
2. Chan C.C., Bouscayrol A., Chen K. Electric, Hybrid, and Fuel-cell Vehicles: Architectures and Modeling // IEEE Trans. Vehicular Technol. 2010. V. 59. No. 2. Pp. 589—598.
3. Global E.V. Outlook: Understanding the Electric Vehicle Landscape to 2020, Apr. 2013 [Электрон ресурс] www.iea.org/publications/globalevoutlook_2013.pdf (дата обращения 06.10.2020).
4. Williamson S., Smith S. Pulsating Torque and Losses in Multiphase Induction Machines // IEEE Trans. Indust. Appl. 2003. V. 39. No. 4. Pp. 986—993.
5. Duran M.J., Barrero F.J., Toral S.L. Multi-phase Space Vector Pulse Width Modulation: Applications and Strategies // Proc. Int. Conf. Renewable Energies and Power Quality. 2007. № 5. Pp. 1—7.
6. Space Vector Pulse Width Modulation MSS Software Implementation User Guide, Microsemi [Электрон ресурс] www.microsemi.com/document-portal/doc_view/133495-space-vector-pulse-width-modulation-mss-software-implementation-user-guide (дата обращения 09.09.2019).
7. Texas Instruments Inc. Appl. Rep. Space-Vector PWM with TMS320C24x/F24x Using Hardware and Software Determined Switching Patterns [Офиц. сайт] www.ti.com/lit/an/spra524/spra524.pdf (дата обращения 09.09.2019).
8. Guzman H. e. a. Application of DSP in Power Conversion Systems — a Practical Approach for Multiphase Drives [Электрон ресурс] www.cdn.intechopen.com/pdfs-wm/48835.pdf (дата обращения 09.09.2019).
9. Томасов В.С., Усольцев А.А., Вертегел Д.А., Денисов К.М. Исследование пульсаций электромагнитного момента в прецизионном сервоприводе при синусоидальной широтно-импульсной модуляции // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 2. С. 359—368.
10. Усольцев A.A. Современный асинхронный электропривод оптико-механических комплексов. СПб.: Изд-во ИТМО, 2011.
11. Калачев Ю.Н. Векторное регулирование (заметки практика) [Офиц. сайт] www.avislab.com/blog/wpcontent/uploads/2016/11/Vector_Kalachev.pdf (дата обращения 09.09.2019).
12. Ле Д.Т., Аверин С.В. Формирование векторной широтно-импульсной модуляции с исключением сквозных токов в трехфазном мостовом инверторе // Вестник Московского авиационного института. 2016. Т. 23. № 4. С. 155—163.
13. Ле Д.Т., Аверин С.В. Оптимизация алгоритмов коммутации в инверторах с векторной ШИМ // Вестник Московского авиационного института. 2016. Т. 23. № 3. С. 155—164.
14. Голубев А.Н., Игнатенко C.B. Влияние числа фаз статорной обмотки асинхронного двигателя на его виброшумовые характеристики // Электротехника. 2000. № 6. С. 28—31.
15. Голубев А.Н., Игнатенко C.B. Многофазный асинхронный электропривод в аномальных режимах работы // Электротехника. 2001. № 10. С. 17—22.
16. Бабаев М.Б., Голубев А.Н., Игнатенко C.B. Влияние числа фаз на пульсации момента и виброшумовые характеристики АД // Тез. докл. II Междунар. конф. по электромеханике и электротехнологиям. Алушта, 1996. С. 150—152.
17. Терешкин В.М. Теоретическое обоснование возможности снижения вибраций электромагнитного происхождения в пятифазной машине переменного тока по сравнению с трехфазной машиной // Вестник Московского авиационного института. 2018. Т. 25. № 4. С. 229—239.
18. Терешкин В.М., Гришин Д.А., Макулов И.А. Установка для экспериментальных исследований многофазных электромеханических систем // Записки Горного института. 2019. Т. 240. С. 678—685.
19. Терешкин В.М., Гришин Д.А., Макулов И.А. Элементы теории многофазных вентильных электромеханических систем // Электротехника. 2019. № 10. С. 56—61.
20. Терешкин В.М., Аитов И.Л., Сергеев Н.А. Исследования алгоритмов управления многофазных мостовых преобразователей // Электротехника. 2020. № 6. С. 17—23.
---
Для цитирования: Терешкин В.М., Аитов И.Л., Гришин Д.А., Терешкин В.В. Пульсация потенциала общей точки трехфазной и пятифазной обмоток двигателя относительно «нуля» преобразователя // Вестник МЭИ. 2021. № 2. С. 51—59. DOI: 10.24160/1993-6982-2021-2-51-59.
#
1. Chan C.C. The State of the Art of Electric, Hybrid and Fuel Cell Vehicles. Proc IEEE. 2007;95;4:704—718.
2. Chan C.C., Bouscayrol A., Chen K. Electric, Hybrid, and Fuel-cell Vehicles: Architectures and Modeling. IEEE Trans. Vehicular Technol. 2010;59;2:589—598.
3. Global E.V. Outlook: Understanding the Electric Vehicle Landscape to 2020, Apr. 2013 [Elektron Resurs] www.iea.org/publications/globalevoutlook_2013.pdf (Data Obrashcheniya 06.10.2020).
4. Williamson S., Smith S. Pulsating Torque and Losses in Multiphase Induction Machines. IEEE Trans. Indust. Appl. 2003;39;4:986—993.
5. Duran M.J., Barrero F.J., Toral S.L. Multi-phase Space Vector Pulse Width Modulation: Applications and Strategies. Proc. Int. Conf. Renewable Energies and Power Quality. 2007;5:1—7.
6. Space Vector Pulse Width Modulation MSS Software Implementation User Guide, Microsemi [Elektron Resurs] www.microsemi.com/document-portal/doc_view/133495-space-vector-pulse-width-modulation-mss-software-implementation-user-guide (Data Obrashcheniya 09.09.2019).
7. Texas Instruments Inc. Appl. Rep. Space-Vector PWM with TMS320C24x/F24x Using Hardware and Software Determined Switching Patterns [Ofits. Sayt] www.ti.com/lit/an/spra524/spra524.pdf (Data Obrashcheniya 09.09.2019).
8. Guzman H. e. a. Application of DSP in Power Conversion Systems — a Practical Approach for Multiphase Drives [Elektron Resurs] www.cdn.intechopen.com/pdfs-wm/48835.pdf (Data Obrashcheniya 09.09.2019).
9. Tomasov V.S., Usol'tsev A.A., Vertegel D.A., Denisov K.M. Issledovanie Pul'satsiy Elektromagnitnogo Momenta v Pretsizionnom Servoprivode pri Sinusoidal'noy Shirotno-impul'snoy Modulyatsii. Nauchno-tekhnicheskiy vestnik Informatsionnykh Tekhnologiy, Mekhaniki i Optiki. 2019;19;2:359—368. (in Russian).
10. Usol'tsev A.A. Sovremennyy Asinkhronnyy Elektroprivod Optiko-mekhanicheskikh Kompleksov. SPb.: Izd-vo ITMO, 2011. (in Russian).
11. Kalachev Yu.N. Vektornoe Regulirovanie (Zametki Praktika) [Ofits. Sayt] www.avislab.com/blog/wpcontent/uploads/2016/11/Vector_Kalachev.pdf (Data Obrashcheniya 09.09.2019). (in Russian).
12. Le D.T., Averin S.V. Formirovanie Vektornoy Shirotno-impul'snoy Modulyatsii s Isklyucheniem Skvoznykh Tokov v Trekhfaznom Mostovom Invertore. Vestnik Moskovskogo Aviatsionnogo Instituta. 2016;23;4:155—163. (in Russian).
13. Le D.T., Averin S.V. Optimizatsiya Algoritmov Kommutatsii v Invertorakh s Vektornoy SHIM. Vestnik Moskovskogo Aviatsionnogo Instituta. 2016;23;3:155—164. (in Russian).
14. Golubev A.N., Ignatenko C.B. Vliyanie Chisla Faz Statornoy Obmotki Asinkhronnogo Dvigatelya na Ego Vibroshumovye Kharakteristiki. Elektrotekhnika. 2000;6:28—31. (in Russian).
15. Golubev A.N., Ignatenko C.B. Mnogofaznyy Asinkhronnyy Elektroprivod v Anomal'nykh Rezhimakh Raboty. Elektrotekhnika. 2001;10:17—22. (in Russian).
16. Babaev M.B., Golubev A.N., Ignatenko C.B. Vliyanie Chisla Faz na Pul'satsii Momenta i Vibroshumovye Kharakteristiki AD. Tez. dokl. II Mezhdunar. Konf. po Elektromekhanike i Elektrotekhnologiyam. Alushta, 1996:150—152. (in Russian).
17. Tereshkin V.M. Teoreticheskoe Obosnovanie Vozmozhnosti Snizheniya Vibratsiy Elektromagnitnogo Proiskhozhdeniya v Pyatifaznoy Mashine Peremennogo Toka po Sravneniyu s Trekhfaznoy Mashinoy. Vestnik Moskovskogo Aviatsionnogo Instituta. 2018;25;4:229—239. (in Russian).
18. Tereshkin V.M., Grishin D.A., Makulov I.A. Ustanovka dlya Eksperimental'nykh Issledovaniy Mnogofaznykh Elektromekhanicheskikh Sistem. Zapiski Gornogo Instituta. 2019;240:678—685. (in Russian).
19. Tereshkin V.M., Grishin D.A., Makulov I.A. Elementy Teorii Mnogofaznykh Ventil'nykh Elektromekhanicheskikh Sistem. Elektrotekhnika. 2019;10:56—61. (in Russian).
20. Tereshkin V.M., Aitov I.L., Sergeev N.A. Issledovaniya Algoritmov Upravleniya Mnogofaznykh Mostovykh Preobrazovateley. Elektrotekhnika. 2020;6:17—23. (in Russian).
---
For citation: Tereshkin V.M., Aitov I.L., Grishin D.A., Tereshkin V.V. Three-Phase and Five-Phase Motor Windings Common Point Potential Ripple with Respect to the Converter Zero Terminal. Bulletin of MPEI. 2021;2:51—59. (in Russian). DOI: 10.24160/1993-6982-2021-2-51-59.
Published
2020-08-20
Section
Electrical Complex and Systems (05.09.03)