Eliminating Three-Phase Voltage Unbalance by Using a Solid-State Transformer in Smart Power Supply Grids

  • Борис [Boris] Александрович [A.] Авдеев [Avdeev]
Keywords: solid-state transformer, symmetrical components, voltage unbalance, unbalance coefficient

Abstract

The use of nonconventional power supplies featuring unstable quality of the electricity produced and fluctuations in the output power, on the one hand, and the availability of various consumers connected to power supply grids, on the other hand, are factors that give rise to phase unbalances in the grids. These circumstances complicate the operation of smart grids, especially in microgrids. One of possible ways to improve the quality of smart power supply grids is to use a three-stage solid-state transformer with galvanic isolation and two DC links, an arrangement that makes it possible to connect power supply sources and consumers, and to arrange backup storage of electricity in storage batteries. The aim of the study is to analyze the electric power quality at the output of a three-stage solid-state transformer powered by an unbalanced three-phase voltage source. The study was carried out by numerical modeling using the Matlab/Simulink software package. The modeling parameters are given, and the current and voltage waveforms at the solid-state transformer output are obtained. Phasors of the input and output voltages are constructed with expanding them into zero-, positive-, and negative sequence harmonic components. The harmonic distortion coefficients for current and voltage in each phase, and the voltage unbalance coefficients for the zero and negative sequences at the solid-state transformer input and output are determined using the method of symmetric components. It has been shown that by using solid-state transformers it becomes possible to obtain noticeably better quality of electric energy and eliminate the unbalance to the levels stipulated by the relevant state standard. It is shown that solid-state transformers are a promising technology as part of smart power supply grids, which opens the possibility to control and adjust power supply parameters, improve the power supply quality, distribute power flows between the sources and consumers, and integrate DC and AC grids of various voltage and power levels.

Information about author

Борис [Boris] Александрович [A.] Авдеев [Avdeev]

Ph.D. (Techn.), Assistant Professor of Ship Electrical Equipment and Production Automation, Kerch State Maritime Technological University, e-mail: dirigeant@mail.ru

References

1. Грабчак Е.П., Логинов Е.Л. Цифровые подходы к управлению объектами электро- и теплоэнергетики с применением интеллектуальных киберфизических систем // Надежность и безопасность энергетики. 2019. Т. 12. № 3. С. 172—176.
2. Перекальский И.Н., Кокин С.Е. Применение технологий распределенного реестра (blockchain) в электроэнергетических системах // Вестник Южно-Уральского гос. ун-та. Серия «Энергетика». 2020. Т. 20. № 1. С. 64—75.
3. Василенко Я.В. Цифровизация российской электроэнергетики: современное состояние и перспективы развития // Проблемы российской экономики на современном этапе: Материалы Всеросс. науч.-практ. конф. М., 2020. С. 105—111.
4. Лоскутов А.Б. Решение проблем при переходе электроэнергетики на цифровые технологии // Интеллектуальная электротехника. 2018. № 1(1). С. 9—25.
5. Vaca-Urbano F., Alvarez-Alvarado M.S. Power Quality with Solid State Transformer Integrated Smart-grids IEEE PES Innovative Smart Grid Technologies // ISGT Latin America. 2017. V. 2017. Pp. 1—6.
6. Булатов Ю.Н., Крюков А.В., Крюков А.Е. Применение энергороутеров для повышения надежности электроснабжения нетяговых потребителей // Системы. Методы. Технологии. 2020. № 4(48). С. 57—64.
7. Bignucolo F., Bertoluzzo, M. Application of Solid-State Transformers in a Novel Architecture of Hybrid AC/DC House Power Systems // Energies. 2020. V. 13. Pp. 3432—3150.
8. Sokolova E.A., Aslanov G.A., Sokolov A.A. Modern Approach to Storing 3D Geometry of Objects in Machine Engineering Industry // Proc. IOP Conf. Series: Materials Sci. and Eng. Tomsk. 2016. P. 177.
9. Zixin L. e. a. A Three-phase 10 kVAC-750 VDC Power Electronic Transformer for Smart Distribution Grid // |Proc. 15th European Conf. Power Electronics and Appl. 2013. Pp. 1—9.
10. Hannan M.A. e. a. State of the Art of Solid-state Transformers: Advanced Topologies, Implementation Issues, Recent Progress and Improvements // IEEE Access. 2020. V. 8. Pp. 191139—19132.
11. Avdeev B., Vyngra A., Chernyi S. Improving the Electricity Quality by Means of a Single-phase Solid-State Transformer // Designs. 2020. V. 4. Pp. 35—45.
12. Yemelyanov V.A., Nedelkin A.A., Olenev L.A. An Object-oriented Design of Expert System Software for Evaluating the Maintenance of Lined Equipment // Proc. Intern. Multi-conf. Industrial Eng. and Modern Technol. Vladivostok, 2019. P. 8934414
13. Бойко А., Бесараб А., Соколов Я., Шапа Л. Улучшение энергетических показателей асинхронных двигателей в условиях питания несимметричным напряжением // Проблемы региональной энергетики. 2019. № 1–1(40). С. 25—35.
14. Verma N., Singh N., Yadav S. Solid State Transformer for Electrical System: Challenges and Solution // Proc. II Intern. Conf. Electronics, Materials Eng. & Nanotechnology. 2018. Рp. 1—5.
15. Авдеев Б.А. Расчет мощности двунаправленного преобразователя постоянного напряжения автономных подводных аппаратов // Вестник Астраханского гос. техн. ун-та. Серия «Морская техника и технология». 2019. № 2. С. 101—109.
16. Lovell H., Powells G. Smart Grid Knowledges and the State // Area. 2020. V. 52(3). Pp. 583—590.
17. ГОСТ 13109—97 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
18. ГОСТ 30804.4.30—2013 (IEC 61000-4-30:2008) Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии.
19. Ronanki D., Williamson S.S. Topological Overview on Solid-state Transformer Traction Technology in High-speed Trains // Proc. IEEE Transportation Electrification Conf. and Expo. Long Beach, 2018. Pp. 32—37.
---
Для цитирования: Авдеев Б.А. Устранение несимметрии трехфазного напряжения с помощью твердотельного трансформатора в интеллектуальных сетях электроснабжения // Вестник МЭИ. 2021. № 4. С. 67—75. DOI: 10.24160/1993-6982-2021-4-67-75.
---
Работа выполнена при поддержке: The President of the Russian Federation (Grant № МК-5450.2021.4)
#
1. Grabchak E.P., Loginov E.L. Tsifrovye Podkhody k Upravleniyu Ob′ektami Elektro- i Teploenergetiki s Primeneniem Intellektual'nykh Kiberfizicheskikh Sistem. Nadezhnost' i Bezopasnost' Energetiki. 2019;12;3:172—176. (in Russian).
2. Perekal'skiy I.N., Kokin S.E. Primenenie Tekhnologiy Raspredelennogo Reestra (Blockchain) v Elektroenergeticheskikh Sistemakh. Vestnik Yuzhno-Ural'skogo Gos. Un-ta. Seriya «Energetika». 2020;20;1:64—75. (in Russian).
3. Vasilenko Ya.V. Tsifrovizatsiya Rossiyskoy Elektroenergetiki: Sovremennoe Sostoyanie i Perspektivy Razvitiya. Problemy Rossiyskoy Ekonomiki na Sovremennom Etape: Materialy Vseross. Nauch.-prakt. Konf. M., 2020:105—111. (in Russian).
4. Loskutov A.B. Reshenie Problem pri Perekhode Elektroenergetiki na Tsifrovye Tekhnologii. Intellektual'naya Elektrotekhnika. 2018;1(1):9—25. (in Russian).
5. Vaca-Urbano F., Alvarez-Alvarado M.S. Power Quality with Solid State Transformer Integrated Smart-grids IEEE PES Innovative Smart Grid Technologies. ISGT Latin America. 2017;2017:1—6.
6. Bulatov Yu.N., Kryukov A.V., Kryukov A.E. Primenenie Energorouterov Dlya Povysheniya Nadezhnosti Elektrosnabzheniya Netyagovykh Potrebiteley. Sistemy. Metody. Tekhnologii. 2020;4(48):57—64. (in Russian).
7. Bignucolo F., Bertoluzzo M. Application of Solid-State Transformers in a Novel Architecture of Hybrid AC/DC House Power Systems. Energies. 2020;13:3432—3150.
8. Sokolova E.A., Aslanov G.A., Sokolov A.A. Modern Approach to Storing 3D Geometry of Objects in Machine Engineering Industry. Proc. IOP Conf. Series: Materials Sci. and Eng. Tomsk. 2016:177.
9. Zixin L. e. a. A Three-phase 10 kVAC-750 VDC Power Electronic Transformer for Smart Distribution Grid. |Proc. 15th European Conf. Power Electronics and Appl. 2013:1—9.
10. Hannan M.A. e. a. State of the Art of Solid-state Transformers: Advanced Topologies, Implementation Issues, Recent Progress and Improvements. IEEE Access. 2020;8:191139—19132.
11. Avdeev B., Vyngra A., Chernyi S. Improving the Electricity Quality by Means of a Single-phase Solid-State Transformer. Designs. 2020;4:35—45.
12. Yemelyanov V.A., Nedelkin A.A., Olenev L.A. An Object-oriented Design of Expert System Software for Evaluating the Maintenance of Lined Equipment. Proc. Intern. Multi-conf. Industrial Eng. and Modern Technol. Vladivostok, 2019:8934414
13. Boyko A., Besarab A., Sokolov YA., Shapa L. Uluchshenie Energeticheskikh Pokazateley Asinkhronnykh Dvigateley v Usloviyakh Pitaniya Nesimmetrichnym Napryazheniem. Problemy Regional'noy Energetiki. 2019;1–1(40):25—35. (in Russian).
14. Verma N., Singh N., Yadav S. Solid State Transformer for Electrical System: Challenges and Solution. Proc. II Intern. Conf. Electronics, Materials Eng. & Nanotechnology. 2018:1—5.
15. Avdeev B.A. Raschet Moshchnosti Dvunapravlennogo Preobrazovatelya Postoyannogo Napryazheniya Avtonomnykh Podvodnykh Apparatov. Vestnik Astrakhanskogo Gos. Tekhn. Un-ta. Seriya «Morskaya Tekhnika i Tekhnologiya». 2019;2:101—109. (in Russian).
16. Lovell H., Powells G. Smart Grid Knowledges and the State. Area. 2020;52(3):583—590.
17. GOST 13109—97 Elektricheskaya Energiya. Sovmestimost' Tekhnicheskikh Sredstv Elektromagnitnaya. Normy Kachestva Elektricheskoy Energii v Sistemakh Elektrosnabzheniya Obshchego Naznacheniya. (in Russian).
18. GOST 30804.4.30—2013 (IEC 61000-4-30:2008) Elektricheskaya Energiya. Sovmestimost' Tekhnicheskikh Sredstv Elektromagnitnaya. Metody Izmereniy Pokazateley Kachestva Elektricheskoy Energii. (in Russian).
19. Ronanki D., Williamson S.S. Topological Overview on Solid-state Transformer Traction Technology in High-speed Trains. Proc. IEEE Transportation Electrification Conf. and Expo. Long Beach, 2018:32—37.
---
For citation: Avdeev B.A. Eliminating Three-Phase Voltage Unbalance by Using a Solid-State Transformer in Smart Power Supply Grids. Bulletin of MPEI. 2021;4:67—75. (in Russian). DOI: 10.24160/1993-6982-2021-4-67-75.
---
The work is executed at support: RFBR (Project No. МК-5450.2021.4)
Published
2021-01-10
Section
Electrical Complex and Systems (05.09.03)