Testing of Image Compression Methods
Abstract
Seven console codecs BMF 2.01 (BMF.exe), WebP (cwebp.exe, dwebp.exe), PAQ8L (paq-8l_intel.exe), PAQ8P (paq8p_sse2.exe), JPEG-LS (jpeg.exe), JPEG2000 (convert.exe), PNG (opting.exe) are tested on a set of 19 grayscale images and 10 color images (widespread images used in testing compression methods).
An image compression program tester was developed. The tester receives images and executable files of image compression programs, and programs are started for each input image to compress and restore the image. The program operation results are contained in an HTML/CSS file, which includes, among other information, the bitrates achieved by the compression programs and the results of checking how successfully the compressed files were restored.
Partial clones of the Blend-A13+, Blend-16, Blend-20 compression methods have been made to compare the effectiveness of the multipredictors that lie at the heart of the Blend-A13+, Blend-16, Blend-20 methods. Partial clones of the Blend-A13+, Blend-16, Blend-20 compression methods consist of multipredictors used in the Blend-A13+, Blend-16, Blend-20, methods, and 13 and 16 elementary predictors used in the Blend-A13+ and Blend-16 methods, respectively. The predictor GAP+ is replaced by the predictor GAP; the modeling like JPEG-LS is replaced by contextual modeling with quantization of a context from differences of pixels from the vicinity of the coded pixel, the arithmetic coder, and the reversible intercolor RGB-YUV transformation from JPEG2000.
For many images, the obtained partial clones outperformed the results yielded by the JPEG-LS, JPEG2000, PNG methods and gave results at the level provided by the PAQ8L and WebP compression methods. In general, the BMF2.01 method demonstrated the best results on the test set of images. On the test set of images, the multipredictors from Blend-16 and Blend-20 unexpectedly provided color image compression results poorer than the multipredictor from the Blend-A13+ method. In compressing grayscale images, the multipredictor from Blend-20 yielded better results than the multipredictors from Blend-16, Blend-A13+.
References
2. Программа для ЭВМ № 2021610742. Программа сжатия изображений v1.0/ Чернов П.А.
3. Чернов П.А. Древовидная модель решения многомерных мультимодальных оптимизационных задач гибридными методами поиска // Вестник МЭИ. 2016. № 1. С. 18—25.
4. Карпенко А.П. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой. М.: Изд-во МГТУ им. Н. Э. Баумана, 2017.
5. Ye H., Deng G., Devlin J. A Weighted Least Squares Method for Adaptive Prediction in Lossless Image Compression // Proc. Picture Coding Symp., 2003. Pp. 489—493.
6. Ulacha G., Stasiński R.: Paths to Future Image Lossless Coding // Proc. 54th Intern. Symp. 2012. Pp. 63—66.
7. Ulacha G. Method of Lossless and Near-lossless Color Image Compression // J. Information Sci. and Eng. 2011. V. 27(2). Pp. 621—642.
8. Wang H., Zhang D. A Linear Model and its Application in Lossless Image Coding // Signal Proc: Image Communication. 2004. V. 19. Pp. 955—958.
9. Ulacha G., Stasinski R. Highly Effective Predictor Blending Method for Lossless Image Coding // Proc. XV IEEE Mediterranean Electrotech. Conf. Valetta, 2010.
10. Ulacha G., Statinski R. Performance Optimized Predictor Blending Technique for Lossless Image Coding // Proc. 36th Int. Conf. Acoustics, Speech and Signal Proc. 2011. Pp. 1541—1544.
11. Kau L.-J., Lin Y.-P., Lin C.-T. Lossless Image Coding Using Adaptive, Switching Algorithm with Automatic Fuzzy Context Modeling // IEEE Proc. Vision, Image and Signal Proc. 2006. V. 153. No. 5. Pp. 684—694.
12. Motta G., Storer J., Carpentieri B. Adaptive Linear Prediction Lossless Image Coding // Proc. Data Compression Conf. 1999. Pp. 491—501.
13. Meyer B., Tischer P. TMW – a New Method for Lossless Image Compression // Proc. Inter. Picture Coding Symp. Berlin, 1997. Pp. 533—538.
14. Ulacha G. Method of Lossless and Near-Lossless Color Image Compression // J. Information Sci. and Eng. 2011. V. 27(2). Pp. 621—642.
15. Wu X., Memon N. CALIC – a Context Based Adaptive Lossless Image Codec. Ontario: Dept. of Computer Science, the University of Western, 1996.
16. Weinberger M.J., Seroussi G.S. From LOCO-I to the JPEG-LS Standard // HP Labs Tech. Rep. HPL-1999-3. Palo Alto: HP Laboratories, 1999.
17. BMF [Электрон. ресурс] www.compression.ru/ds/ (дата обращения 22.12.2020).
18. Matsuda I., Ozaki N., Umezu Y., Itoh S. Lossless Coding Using Variable Block-Size Adaptive Prediction Optimized for Each Image. Tokyo: Dept. of Electrical Engineering, Faculty of Science and Technology, Science University of Tokyo, 2005.
19. Hsien F.Y., Fan K.-C. A High Performance Lossless Image Coder. Chung-Li: Institute of Computer Sci. and Information Eng., National Central University, 2004.
20. Ulacha G., Statinski R. New Context-based Adaptive Linear Prediction Algorithm for Lossless Image Coding // Proc. Intern Conf. Signals and Electronic Systems, 2014. Pp. 1—4.
21. Ulacha G., Stasinski R. Effective Context Lossless Image Coding Approach Based on Adaptive Prediction // Proc. Intern. Conf. Signal and Image, 2009. Pp. 2168—2173.
22. Data Compression Programs [Электрон. ресурс] www.cs.fit.edu/~mmahoney/compression/#paq (дата обращения 22.12.2020).
23. Motta G., Storer J., Carpentieri B. Adaptive Linear Prediction Lossless Image Coding // Proc. Data Compression Conf. 1999. Pp. 491—501.
24. A New Image Format for the Web [Электрон. ресурс] www.developers.google.com/speed/webp/ (дата обращения 22.12.2020).
25. FLIF — Free Lossless Image Format [Электрон. ресурс] www.flif.info/ (дата обращения 22.12.2020).
26. Image Compression Programs [Электрон. ресурс] www.cipr.rpi.edu/research/SPIHT/spiht3.html (дата обращения 22.12.2020).
27. The PAQ Data Compression Programs [Электрон. ресурс] www.mattmahoney.net/dc/paq.html#paq8 (дата обращения 22.12.2020).
28. Wu X. Lossless Compression of Continuous-tone Images via Context Selection, Quantization, and Modeling. Ontario: Dept. Computer Sci., University of Western Ontario, 1996.
29. The Art of Lossless Data Compression, Theory & Practice, Past, Present & Future [Электрон. ресурс] www.compression.ru/artest/index.html (дата обращения 22.12.2020).
30. Kau L.-J., Lin Y.-P. Least-squares-based Switching Structure for Lossless Image Coding // IEEE Trans. Circuits and Systems. 2007. V. 54. No. 7. Pp. 1529—1541.
31. Ulacha G., Statinski R. Improved Predictor Blending Technique for Lossless Image Coding // Proc. Conf. Signals and Electronic Syst. 2010. Pp. 115—118.
32. Ulacha G., Statinski R., Wernik C. Extended Multi WLS Method for Lossless Image Coding // Entropy. 2020. V. 22. Pp. 919—943.
33. Программа для ЭВМ № 2020661447. Тестировщик программ сжатия изображений v1.0 / Чернов П.А.
---
Для цитирования: Чернов П.А. Тестирование методов сжатия изображений // Вестник МЭИ. 2021. № 4. С. 105—113.
DOI: 10.24160/1993-6982-2021-4-105-113.
#
1. Vatolin D. i dr. Metody Szhatiya Dannykh. Ustroystvo Arkhivatorov, Szhatie Izobrazheniy i Video. M.: Dialog-MIFI, 2003. (in Russian).
2. Programma dlya EVM № 2021610742. Programma Szhatiya Izobrazheniy v1.0. Chernov P.A. (in Russian).
3. Chernov P.A. Drevovidnaya Model' Resheniya Mnogomernykh Mul'timodal'nykh Optimizatsionnykh Zadach Gibridnymi Metodami Poiska. Vestnik MEI. 2016;1:18—25. (in Russian).
4. Karpenko A.P. Sovremennye Algoritmy Poiskovoy Optimizatsii. Algoritmy, Vdokhnovlennye Prirodoy. M.: Izd-vo MGTU im. N. E. Baumana, 2017. (in Russian).
5. Ye H., Deng G., Devlin J. A Weighted Least Squares Method for Adaptive Prediction in Lossless Image Compression. Proc. Picture Coding Symp., 2003:489—493.
6. Ulacha, G., Stasiński R.: Paths to Future Image Lossless Coding. Proc. 54th Intern. Symp. 2012:63—66.
7. Ulacha G. Method of Lossless and Near-lossless Color Image Compression. J. Information Sci. and Eng. 2011;27(2):621—642.
8. Wang H., Zhang D. A Linear Model and its Application in Lossless Image Coding. Signal Proc: Image Communication. 2004;19:955—958.
9. Ulacha G., Stasinski R. Highly Effective Predictor Blending Method for Lossless Image Coding. Proc. XV IEEE Mediterranean Electrotech. Conf. Valetta, 2010.
10. Ulacha G., Statinski R. Performance Optimized Predictor Blending Technique for Lossless Image Coding. Proc. 36th Int. Conf. Acoustics, Speech and Signal Proc. 2011:1541—1544.
11. Kau L.-J., Lin Y.-P., Lin C.-T. Lossless Image Coding Using Adaptive, Switching Algorithm with Automatic Fuzzy Context Modeling. IEEE Proc. Vision, Image and Signal Proc. 2006;153;5:684—694.
12. Motta G., Storer J., Carpentieri B. Adaptive Linear Prediction Lossless Image Coding. Proc. Data Compression Conf. 1999:491—501.
13. Meyer B., Tischer P. TMW – a New Method for Lossless Image Compression. Proc. Inter. Picture Coding Symp. Berlin, 1997:533—538.
14. Ulacha G. Method of Lossless and Near-Lossless Color Image Compression. J. Information Sci. and Eng. 2011;27(2):621—642.
15. Wu X., Memon N. CALIC – a Context Based Adaptive Lossless Image Codec. Ontario: Dept. of Computer Science, the University of Western, 1996.
16. Weinberger M. J., Seroussi G. S. From LOCO-I to the JPEG-LS Standard. HP Labs Tech. Rep. HPL-1999-3. Palo Alto: HP Laboratories, 1999.
17. BMF [Elektron. Resurs] www.compression.ru/ds/ (Data Obrashcheniya 22.12.2020).
18. Matsuda I., Ozaki N., Umezu Y., Itoh S. Lossless Coding Using Variable Block-Size Adaptive Prediction Optimized for Each Image. Tokyo: Dept. of Electrical Engineering, Faculty of Science and Technology, Science University of Tokyo, 2005.
19. Hsien F.Y., Fan K.-C. A High Performance Lossless Image Coder. Chung-Li: Institute of Computer Sci. and Information Eng., National Central University, 2004.
20. Ulacha G., Statinski R. New Context-based Adaptive Linear Prediction Algorithm for Lossless Image Coding. Proc. Intern Conf. Signals and Electronic Systems, 2014:1—4.
21. Ulacha G., Stasinski R. Effective Context Lossless Image Coding Approach Based on Adaptive Prediction. Proc. Intern. Conf. Signal and Image, 2009:2168—2173.
22. Data Compression Programs [Elektron. Resurs] www.cs.fit.edu/~mmahoney/compression/#paq (Data Obrashcheniya 22.12.2020).
23. Motta G., Storer J., Carpentieri B. Adaptive Linear Prediction Lossless Image Coding. Proc. Data Compression Conf. 1999:491—501.
24. A New Image Format for the Web [Elektron. Resurs] www.developers.google.com/speed/webp/ (Data Obrashcheniya 22.12.2020).
25. FLIF — Free Lossless Image Format [Elektron. Resurs] www.flif.info/ (Data Obrashcheniya 22.12.2020).
26. Image Compression Programs [Elektron. Resurs] www.cipr.rpi.edu/research/SPIHT/spiht3.html (Data Obrashcheniya 22.12.2020).
27. The PAQ Data Compression Programs [Elektron. Resurs] www.mattmahoney.net/dc/paq.html#paq8 (Data Obrashcheniya 22.12.2020).
28. Wu X. Lossless Compression of Continuous-tone Images via Context Selection, Quantization, and Modeling. Ontario: Dept. Computer Sci., University of Western Ontario, 1996.
29. The Art of Lossless Data Compression, Theory & Practice, Past, Present & Future [Elektron. Resurs] www.compression.ru/artest/index.html (Data Obrashcheniya 22.12.2020).
30. Kau L.-J., Lin Y.-P. Least-squares-based Switching Structure for Lossless Image Coding. IEEE Trans. Circuits and Systems. 2007;54;7:1529—1541.
31. Ulacha G., Statinski R. Improved Predictor Blending Technique for Lossless Image Coding. Proc. Conf. Signals and Electronic Syst. 2010:115—118.
32. Ulacha G., Statinski R., Wernik C. Extended Multi WLS Method for Lossless Image Coding. Entropy. 2020; 22:919—943.
33. Programma dlya EVM № 2020661447. Testirovshchik Programm Szhatiya Izobrazheniy v1.0. Chernov P.A. (in Russian).
---
For citation: Chernov P.A. Testing of Image Compression Methods. Bulletin of MPEI. 2021;4:105—113. (in Russian). DOI: 10.24160/1993-6982-2021-4-105-113.