Об одном классе алгебраических дифференциальных уравнений

  • Ирина [Irina] Николаевна [N.] Дорофеева [Dorofeeva]
  • Виктория [Viktoriya] Александровна [A.] Подкопаева [Podkopaeva]
  • Александр [Aleksandr] Яковлевич [Ya.] Янченко [Yanchenko]
Ключевые слова: целая функция, алгебраическое дифференциальное уравнение, выделенная линейная часть

Аннотация

Работа посвящена алгебраическим дифференциальным уравнениям второго порядка, имеющим выделенную линейную часть и допускающим в качестве решения целую функцию конечного порядка.

Описаны все возможные целые решения подобных уравнений. Показано, что все такие решения являются решениями некоторых линейных дифференциальных уравнений второго порядка, содержащих в качестве коэффициентов рациональные функции. Продемонстрировано, что любая такая целая функция y = f(z) является либо решением алгебраического уравнения R(z, exp{Q(z)}, y) ≡ 0 (R — некоторый многочлен от трёх переменных; Q(z) — многочлен одной переменной), либо решением дифференциального уравнения с разделяющимися переменными y′ = a(z)y (при некоторой рациональной функции a(z)).

Сведения об авторах

Ирина [Irina] Николаевна [N.] Дорофеева [Dorofeeva]

старший преподаватель кафедры высшей математики НИУ «МЭИ», e-mail: DorofeevaIN@mpei.ru

Виктория [Viktoriya] Александровна [A.] Подкопаева [Podkopaeva]

старший преподаватель кафедры высшей математики НИУ «МЭИ», e-mail: VAPodk@yandex.ru

Александр [Aleksandr] Яковлевич [Ya.] Янченко [Yanchenko]

кандидат физико-математических наук, доцент кафедры высшей математики НИУ «МЭИ», e-mail: YanchenkoAY@mpei.ru

Литература

1. Ерёменко А.Э. Мероморфные решения алгебраических дифференциальных уравнений // Успехи математических наук. 1982. Т. 37. № 4(226). С. 53—82.
2. Горбузов В.Н. Целые решения алгебраических дифференциальных уравнений. Гродно: Изд-во ГРГУ, 2006.
3. Янченко А.Я. О некоторых арифметических свойствах значений целых функций конечного порядка и их первых производных // Математический сборник. 2019. Т. 210. № 12. С. 136—150.
4. Янченко А.Я., Подкопаева В.А. О целых функциях — решениях одного класса алгебраических дифференциальных уравнений // Сибирские электронные математические известия. 2018. Т. 15. С. 1284—1291.
5. Левин Б.Я. Распределение корней целых функций. М.: ГИТТЛ, 1956.
---
Для цитирования: Дорофеева И.Н., Подкопаева В.А., Янченко А.Я. Об одном классе алгебраических дифференциальных уравнений // Вестник МЭИ. 2021. № 5. С. 135—137. DOI: 10.24160/1993-6982-2021-5-135-137
#
1. Eremenko A.E. Meromorfnye Resheniya Algebraicheskikh Differentsial'nykh Uravneniy. Uspekhi Matematicheskikh Nauk. 1982;37;4(226):53—82. (in Russian).
2. Gorbuzov V.N. Tselye Resheniya Algebraicheskikh Differentsial'nykh Uravneniy. Grodno: Izd-vo GRGU, 2006. (in Russian).
3. Yanchenko A.Ya. O Nekotorykh Arifmeticheskikh Svoystvakh Znacheniy Tselykh Funktsiy Konechnogo Poryadka i Ikh Pervykh Proizvodnykh. Matematicheskiy Sbornik. 2019;210;12:136—150. (in Russian).
4. Yanchenko A.Ya., Podkopaeva V.A. O tselykh Funktsiyakh — Resheniyakh Odnogo Klassa Algebraicheskikh Differentsial'nykh Uravneniy. Sibirskie Elektronnye Matematicheskie Izvestiya. 2018;15:1284—1291. (in Russian).
5. Levin B.Ya. Raspredelenie Korney Tselykh Funktsiy. M.: GITTL, 1956. (in Russian).
---
For citation: Dorofeeva I.N., Podkopaeva V.A., Yanchenko A.Ya. On One Class of Algebraic Differential Equations. Bulletin of MPEI. 2021;5:135—137. (in Russian). DOI: 10.24160/1993-6982-2021-5-135-137.
Опубликован
2021-02-17
Раздел
Дифференциальные уравнения, динамические системы и оптимальное управление (01.01.02)