Determination of Marginal Power Flows Based on an Adaptive Gradual Load Increase Trajectory

  • Наталья [Natalya] Ленмировна [L.] Бацева [Batseva]
  • Василий [Vasiliy] Александрович [A.] Сухоруков [Sukhorukov]
Keywords: monitored section, small-signal aperiodic stability, adaptive gradual loading trajectory, stability margin monitoring system, chain-shaped grid configuration

Abstract

The aim of the study is to develop a technique for searching an adaptive gradual load increase trajectory for power grids with a chain structure and to test this technique on the monitored 500 kV backbone grid sections. The technique for searching an adaptive gradual load increase trajectory was developed proceeding from the theoretical data about the chain structures of power grids and about the specific features of their operation modes. The voltage levels at the 500 kV backbone grid nodes and normalized phase angles across the ties included in the studied section and in the adjacent monitored sections are adopted as criteria for monitoring loss of small-signal aperiodic stability in the section under study. Special attention is paid to active power flows through the monitored adjacent sections with respect to the section under study. The proposed technique was tested on two monitored sections of the backbone 500 kV grid. The numerical analysis results have shown that under certain grid configuration and mode conditions, the marginal active power flow determined according to the proposed technique is either higher than the marginal active power flow determined using the mode change vector with the difference between the values from 54 MW to 319 MW, or lower than the marginal flow, with the difference between the values from 121 MW to 228 MW. It has been established that the difference between the values is caused by higher or lower loading of the monitored adjacent sections with respect to the section under study. Grid configuration and mode conditions has also been found in which the marginal active power flows determined according to the proposed technique and the mode change vector are almost identical with one another with the difference making about 15 MW. The subsequent algorithmic implementation of the procedure and development of the relevant software will make it possible to apply it to a larger number of monitored sections and to study various grid configuration and mode conditions for accumulating statistical data. If the software operation speed requirements in a close-to-real-time mode are satisfied, the software will be adapted to the Stability Margin Monitoring System software package. On the whole, the testing of the proposed technique for chain-shaped grids allowed us to conclude that the procedure can be used for searching an adaptive gradual loading trajectory and determining marginal active power flows in regard of small-signal aperiodic stability using the power system analysis model corresponding to the current grid configuration and mode conditions.

Information about authors

Наталья [Natalya] Ленмировна [L.] Бацева [Batseva]

Ph.D. (Techn.), Assistant Professor, Assistant Professor of Electric Power and Electrical Engineering Dept. of the Engineering School of Power Engineering, National Research Tomsk Polytechnic University, e-mail: batsevan@tpu.ru

Василий [Vasiliy] Александрович [A.] Сухоруков [Sukhorukov]

Ph.D.-student of the Engineering School of Power Engineering, National Research Tomsk Polytechnic University, e-mail: vas60005596@yandex.ru

References

1. Maslennikov S., Litvinov E., Vaiman M., Vaiman M. Implementation of ROSE for On-line Voltage Stability Analysis at ISO New England // Proc. IEEE PES General Meeting Conf. and Exposition. New Jersey, 2014. Pp. 1—5.
2. Malik S., Vaiman M., Vaiman M. Implementation of ROSE for Real-time Voltage Stability Analysis at WECC RC // Proc. IEEE PES T&D Conf. and Exposition. Chicago, 2014. Pp. 1—5.
3. Cepeda J.C., Argüello G.A., Verdugo P.X., De La Torre A.B. Real-time Monitoring of Steady-state and Oscillatory Stability Phenomena in the Ecuadorian Power System // Proc. IEEE PES Transmission & Distribution Conf. and Exposition. Medellin, 2014. Pp. 1—6.
4. Chen J., Mortensen T., Blevins B., Thompson C., Du Pengwei. ERCOT Experience in Using Online Stability Analysis in Real-time Operations // Proc. IEEE Power & Energy Soc. General Meeting. Denver, 2015. Pp. 1—5.
5. Zhao J. e. a. On-line Voltage Stability Monitoring and Control (VSMC) System in Fujian Power Grid // Proc. IEEE Power Eng. Soc. General Meeting. Tampa, 2007. Pp. 1—6.
6. Campeanu H.S., L'Helguen E., Assef Y., Vidal N., Savulescu S.C. Real-time Stability Monitoring at Transelectrica // Proc. IEEE PES Power Systems Conf. and Exposition. Atlanta, 2007. Pp. 1–6.
7. Zhao J. e. a. A Real-time Monitor Framework for Static Voltage Stability of Power System // Proc. IEEE Region X Conf. Melbourne, 2007. Pp. 1—4.
8. Li S., Ajjarapu V., Djukanovic M. Adaptive On-line Monitoring of Voltage Stability Margin via Local Regression // IEEE Trans. Power Systems. 2018. V. 33. Iss. 1. Pp. 701—713.
9. Dimitrovska T., Rudež U., Mihalič R. Real-time Application of an Indirect Power-system Contingency Screening Method Based on Adaptive PCA // IEEE Trans. Power Systems. 2019. V. 34. Iss. 6. Pp. 4665—4673.
10. Александров А.С., Максименко Д.М., Михайленко А.Ф., Неуймин В.Г. Развитие системы мониторинга запасов устойчивости с контролем динамической устойчивости для учета действия противоаварийной автоматики // Известия НТЦ Единой энергетической системы. 2017. № 1. С. 64—72.
11. Томалев А.А. Система мониторинга запасов устойчивости (СМЗУ). Опыт эксплуатации и перспективные направления развития СМЗУ в ОЭС Сибири // Электроэнергетика глазами молодежи: Сб. научн. тр. юбилейной X Междунар. научн.-техн. конф. Иркутск, 2019. Т. 2. С. 83—86.
12. Александров А.С., Максименко Д.М., Неуймин В.Г. Расчет максимально допустимых перетоков в системе мониторинга запасов устойчивости // Известия НТЦ Единой энергетической системы. 2014. № 1. С. 13—23.
13. Жуков А.В., Сацук Е.И. Средство от опасных перетоков // Корпоративный бюллетень АО «СО ЕЭС» 50 Гц. 2017. № 3. С. 1—3.
14. Портной М.Г., Рабинович Р.С. Управление энергосистемами для обеспечения устойчивости. Москва: Энергия, 1978.
15. Совалов С.А., Семенов В.А. Противоаварийное управление в энергосистемах. Москва: Энергоатомиздат, 1988.
16. Курмак В.В. Совершенствование методов выявления и мониторинга опасных сечений электроэнергетической системы: дис. … канд. техн. наук. Иваново: Изд-во Ивановского гос. энергетического ун-та им. В.И. Ленина, 2012.
17. Гамм А.З., Голуб И.И. Сенсоры и слабые места в электроэнергетических системах. Иркутск: СЭИ СО РАН, 1996.
18. Аржанников С.Г., Вторушин А.С., Захаркин О.В., Ландман А.К., Петров А.Э., Попова Е.Ю. Алгоритмическое обеспечение ПТК верхнего уровня ЦСПА ОЭС Сибири и перспективы развития // Известия НТЦ Единой энергетической системы. 2013. № 1. С. 91—98.
19. Крюков А.В. Предельные режимы электроэнергетических систем. Иркутск: ИрГУПС, 2012.
20. СТО 59012820.27.010.004—2020. Правила определения максимально допустимых и аварийно-допустимых перетоков активной мощности в контролируемых сечениях.
---
Для цитирования: Бацева Н.Л., Сухоруков В.А. Определение допустимых перетоков мощности на основе адаптивной траектории утяжеления // Вестник МЭИ. 2021. № 6. С. 20—30. DOI: 10.24160/1993-6982-2021-6-20-30
#
1. Maslennikov S., Litvinov E., Vaiman M., Vaiman M. Implementation of ROSE for On-line Voltage Stability Analysis at ISO New England. Proc. IEEE PES General Meeting Conf. and Exposition. New Jersey, 2014:1—5.
2. Malik S., Vaiman M., Vaiman M. Implementation of ROSE for Real-time Voltage Stability Analysis at WECC RC. Proc. IEEE PES T&D Conf. and Exposition. Chicago, 2014:1—5.
3. Cepeda J.C., Argüello G.A., Verdugo P.X., De La Torre A.B. Real-time Monitoring of Steady-state and Oscillatory Stability Phenomena in the Ecuadorian Power System. Proc. IEEE PES Transmission & Distribution Conf. and Exposition. Medellin, 2014:1—6.
4. Chen J., Mortensen T., Blevins B., Thompson C., Du Pengwei. ERCOT Experience in Using Online Stability Analysis in Real-time Operations. Proc. IEEE Power & Energy Soc. General Meeting. Denver, 2015:1—5.
5. Zhao J. e. a. On-line Voltage Stability Monitoring and Control (VSMC) System in Fujian Power Grid. Proc. IEEE Power Eng. Soc. General Meeting. Tampa, 2007:1—6.
6. Campeanu H.S., L'Helguen E., Assef Y., Vidal N., Savulescu S.C. Real-time Stability Monitoring at Transelectrica. Proc. IEEE PES Power Systems Conf. and Exposition. Atlanta, 2007:1–6.
7. Zhao J. e. a. A Real-time Monitor Framework for Static Voltage Stability of Power System. Proc. IEEE Region X Conf. Melbourne, 2007:1—4.
8. Li S., Ajjarapu V., Djukanovic M. Adaptive On-line Monitoring of Voltage Stability Margin via Local Regression. IEEE Trans. Power Systems. 2018;33;1:701—713.
9. Dimitrovska T., Rudež U., Mihalič R. Real-time Application of an Indirect Power-system Contingency Screening Method Based on Adaptive PCA. IEEE Trans. Power Systems. 2019;34;6:4665—4673.
10. Aleksandrov A.S., Maksimenko D.M., Mikhaylenko A.F., Neuymin V.G. Razvitie Sistemy Monitoringa Zapasov Ustoychivosti s Kontrolem Dinamicheskoy Ustoychivosti dlya Ucheta Deystviya Protivoavariynoy Avtomatiki. Izvestiya NTC Edinoy Energeticheskoy Sistemy. 2017;1:64—72. (in Russian).
11. Tomalev A.A. Sistema Monitoringa Zapasov Ustoychivosti (SMZU). Opyt Ekspluatacii i Perspektivnye Napravleniya Razvitiya SMZU v OES Sibiri. Elektroenergetika Glazami Molodezhi: Sb. Nauchn. Tr. Yubileynoy X Mezhdunar. Nauchn.-tekhn. Konf. Irkutsk, 2019;2:83—86. (in Russian).
12. Aleksandrov A.S., Maksimenko D.M., Neuymin V.G. Raschet Maksimal'no Dopustimykh Peretokov v Sisteme Monitoringa Zapasov Ustoychivosti. Izvestiya NTC Edinoy Energeticheskoy Sistemy. 2014;1:13—23. (in Russian).
13. Zhukov A.V., Sacuk E.I. Sredstvo ot Opasnykh Peretokov. Korporativnyy Byulleten' AO «SO EES» 50 Gtc. 2017;3:1—3. (in Russian).
14. Portnoy M.G., Rabinovich R.S. Upravlenie Energosistemami dlya Obespecheniya Ustoychivosti. Moskva: Energiya, 1978. (in Russian).
15. Sovalov S.A., Semenov V.A. Protivoavariynoe Upravlenie v Energosistemakh. Moskva: Energoatomizdat, 1988. (in Russian).
16. Kurmak V.V. Sovershenstvovanie Metodov Vyyavleniya i Monitoringa Opasnykh Secheniy Elektroenergeticheskoy Sistemy: Dis. … Kand. Tekhn. Nauk. Ivanovo: Izd-vo Ivanovskogo Gos. Energeticheskogo Un-ta im. V.I. Lenina, 2012. (in Russian).
17. Gamm A.Z., Golub I.I. Sensory i Slabye Mesta v Elektroenergeticheskikh Sistemakh. Irkutsk: SEI SO RAN, 1996. (in Russian).
18. Arzhannikov S.G., Vtorushin A.S., Zakharkin O.V., Landman A.K., Petrov A.E., Popova E.Yu. Algoritmicheskoe Obespechenie PTK Verkhnego Urovnya CSPA OES Sibiri i Perspektivy Razvitiya. Izvestiya NTC Edinoy Energeticheskoy Sistemy. 2013;1:91—98. (in Russian).
19. Kryukov A.V. Predel'nye Rezhimy Elektroenergeticheskikh Sistem. Irkutsk: IrGUPS, 2012. (in Russian).
20. STO 59012820.27.010.004—2020. Pravila Opredeleniya Maksimal'no Dopustimykh i Avariyno-dopustimykh Peretokov Aktivnoy Moshchnosti v Kontroliruemykh Secheniyakh. (in Russian).
---
For citation: Batseva N.L., Sukhorukov V.A. Determination of Marginal Power Flows Based on an Adaptive Gradual Load Increase Trajectory. Bulletin of MPEI. 2021;6:20—30. (in Russian). DOI: 10.24160/1993-6982-2021-6-20-30
Published
2021-05-19
Section
Power Stations and Electric Power Systems (05.14.02)