Setting up the Attribute Space of Periodic Time Dependencies for Dynamic Object Diagnostic Systems (Taking the Eye Retina as an Example)

  • Юлия [Yuliya] Сергеевна [S.] Александрова [Aleksandrova]
  • Дмитрий [Dmitriy] Александрович [A.] Баларев [Balarev]
  • Олег [Oleg] Сергеевич [S.] Колосов [Kolosov]
  • Анна [Anna] Вардановна [V.] Овивян [Ovivyan]
  • Ольга [Olga] Игоревна [I.] Парфенова [Parfenova]
Keywords: attribute space, diagnostics, pulse, dynamic object, frequency responses

Abstract

The technology of testing dynamically and structurally similar aircraft models for flutter in subsonic wind tunnels using information and The article addresses techniques for setting up the attribute space of informative features of periodic signals recorded at the output of a dynamic object with an unknown structure in response to rectangular testing signals of different frequencies applied to the object input. The attribute space is used in developing expert systems for diagnosing the current state of an operating dynamic object. With a great variety of possible developing faults, the simplest practical techniques involving the use of characteristic points of change in the observed time dependencies yield a limited number of features with large mutual intersection domains. To expand the attribute space, it is proposed to use the expansion of input and output signals into a Fourier series for setting up a base of additional features. The proposed features characterize, depending on the testing conditions, the object’s transferring properties in the frequency domain from changes in its amplitude and phase characteristics. The test pulse frequency and duration serve as such conditions. For the convenience of comparing the object’s frequency responses variation pattern, two special procedures are used. The first procedure allows the observed time dependencies to be reduced to a single pseudo frequency of the test signals. The second procedure uses specially formed windows for subjecting individual fragments of the observed time dependencies to a spectral analysis. It is shown that, depending on the type of the frequency responses being analyzed, the techniques for their polynomial approximation, as well as integral estimates of frequency response individual domains can be useful. The polynomial approximation makes it possible to use the coefficients of the approximating polynomials as additional features, and the integration of individual characteristic domains of the frequency responses makes it possible to introduce dimensionless relative indicators that characterize the degree of change in the frequency responses depending on the experimental conditions. The considered techniques open the possibility to select additional features that can help distinguish both separate groups of faults and individual faults in operating objects. The study results are illustrated by the examples of analyzing the changes in electroretinograms that record changes in the eye retina biopotential in response to light flashes of different frequencies.

Information about authors

Юлия [Yuliya] Сергеевна [S.] Александрова [Aleksandrova]

Master's Degree in the Direction of 27.04.04 «Management in Technical Systems», NRU MPEI, e-mail: y.lxndrv@yandex.ru

Дмитрий [Dmitriy] Александрович [A.] Баларев [Balarev]

Senior Lecturer of Control and Intelligent Technologies Dept., NRU MPEI, e-mail: BalarevDA@mpei.ru

Олег [Oleg] Сергеевич [S.] Колосов [Kolosov]

Dr.Sci. (Techn.), Professor of Control and Intelligent Technologies Dept., NRU MPEI, e-mail: KolosovOS@mpei.ru

Анна [Anna] Вардановна [V.] Овивян [Ovivyan]

Student (Undergraduate) of Institute of Information and Computing Technologies, NRU MPEI, e-mail: annaovivyan@mail.ru

Ольга [Olga] Игоревна [I.] Парфенова [Parfenova]

Programmer-developer of the Research Center «Automated Control Systems», Moscow, e-mail: Oligha1996@mail.ru

References

1. Гинсберг К.С., Басанов Д.М. Идентификация и задачи управления // Идентификация систем и задачи управления: Пленарные доклады IV Междунар. конф. М.: Институт проблем управления им. В.А. Трапезникова РАН, 2005. С. 56—63.
2. Методы классической и современной теории автоматического управления. Т. 2. Статистическая динамика и идентификация систем автоматического управления / под ред. К.А. Пупкова, Н.Д. Егупова. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004.
3. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. N.-Y.: Springer, 2001.
4. Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: классификация и снижение размерности. М.: Финансы и статистика, 1989.
5. Дьяконов А.Г. Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMiner и MatLab. М.: Изд-во МГУ им. М.В. Ломоносова, 2010.
6. Anisimov D.N. e. a. Diagnosis of the Current State of Dynamic Objects and Systems with Complex Structures by Fuzzy Logic Using Simulation Models // Sc. and Techn. Information Proc. 2013. V. 40. No. 6. Pp. 365—374.
7. Marmor F. e. a. ISCEV Standard for Full-field Clinical Electroretinography // Doc. Ophthalmol. 2009. V. 118. Pp. 69—77.
8. Stockton R., Slaughter M. B-wave of the Electroretinogram: A Reflection of on Bipolar Cell Activity // J. Gen. Physiol. 1989. V. 93. Pp. 101—122.
9. Falsini B. e. a. The Fundamental and Second Harmonic of the Photopic Flicker Electroretinogram: Temporal Frequency-dependent Abnormalities in Retinitis Pigmentosa // Clin. Neurophysiol. 1999. V. 35. Pp. 4282—4290.
10. Dong C.J., Hare W.A. Contribution to the Kinetics and Amplitude of the Electroretinogram b-wave by Third-order Retinal Neurons in the Rabbit Retina // Vision Research. 2000. V. 40. Pp. 579—589.
11. Hood D.C. e. a. ISCEV Standard for Clinical Multifocal Electroretinography (mfERG) // Doc. Ophthalmol. 2012. V. 124. Pp. 1—13.
12. McCulloch D.L. e. a. ISCEV Standard for Full-field Clinical Electroretinography // Doc. Ophthalmol. 2015. V. 130. Pp. 1—12.
13. Bach M. e. a. ISCEV Standard for Clinical Pattern Electroretinography (PERG) // Doc. Ophthalmol. 2013. V. 124. Pp. 1—13.
14. Ягодкина Т.В., Беседин В.М. Теория автоматического управления. М.: Изд-во Юрайт, 2018.
15. Анго А. Математика для электро- и радиоинженеров. М.: Наука, 1967.
16. Колосов О.С., Короленкова В.А., Пронин А.Д., Титова О.Д. Преобразование периодических временных зависимостей для расширения признакового пространства в задачах диагностики состояния динамических объектов // Вестник МЭИ. 2020. № 3. С. 81—91.
17. Сергиенко А.Б. Цифровая обработка сигналов. СПб. БХВ-Петербург, 2013.
18. Свиридов В.Г., Свиридов Е.В., Филаретов Г.Ф. Основы автоматизации теплофизического эксперимента. М.: Издат. дом МЭИ, 2019
---
Для цитирования: Александрова Ю.С., Баларев Д.А., Колосов О.С., Овивян А.В., Парфенова О.И. Формирование признакового пространства периодических временных зависимостей для систем диагностики состояния динамических объектов на примере сетчатки глаза // Вестник МЭИ. 2021. № 6. С. 100—000. DOI: 10.24160/1993-6982-2021-6-100-107
---
Работа выполнена при поддержке: РФФИ (проект № 19-01-00143)
#
1. Ginsberg K.S., Basanov D.M. Identifikatsiya i Zadachi Upravleniya. Identifikatsiya Sistem i Zadachi Upravleniya: Plenarnye Doklady IV Mezhdunar.Konf. M.: Institut Problem Upravleniya im. V.A. Trapeznikova RAN, 2005:56—63. (in Russian).
2. Metody Klassicheskoy i Sovremennoy Teorii Avtomaticheskogo Upravleniya. T. 2. Statisticheskaya Dinamika i Identifikatsiya Sistem Avtomaticheskogo Upravleniya. Pod Red. K.A. Pupkova, N.D. Egupova. M.: Izd-vo MGTU im. N.E. Baumana, 2004. (in Russian).
3. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. N.-Y.: Springer, 2001.
4. Ayvazyan S.A., Bukhshtaber V.M., Enyukov I.S., Meshalkin L.D. Prikladnaya Statistika: Klassifikatsiya i Snizhenie Razmernosti. M.: Finansy i Statistika, 1989. (in Russian).
5. D'yakonov A.G. Analiz Dannykh, Obuchenie po Pretsedentam, Logicheskie Igry, Sistemy WEKA, RapidMiner i MatLab. M.: Izd-vo MGU im. M.V. Lomonosova, 2010. (in Russian).
6. Anisimov D.N. e. a. Diagnosis of the Current State of Dynamic Objects and Systems with Complex Structures by Fuzzy Logic Using Simulation Models. Sc. and Techn. Information Proc. 2013;40;6:365—374.
7. Marmor F. e. a. ISCEV Standard for Full-field Clinical Electroretinography. Doc. Ophthalmol. 2009;118:69—77.
8. Stockton R., Slaughter M. B-wave of the Electroretinogram: A Reflection of on Bipolar Cell Activity. J. Gen. Physiol. 1989;93:101—122.
9. Falsini B. e. a. The Fundamental and Second Harmonic of the Photopic Flicker Electroretinogram: Temporal Frequency-dependent Abnormalities in Retinitis Pigmentosa. Clin. Neurophysiol. 1999;35:4282—4290.
10. Dong C.J., Hare W.A. Contribution to the Kinetics and Amplitude of the Electroretinogram b-wave by Third-order Retinal Neurons in the Rabbit Retina. Vision Research. 2000;40:579—589.
11. Hood D.C. e. a. ISCEV Standard for Clinical Multifocal Electroretinography (mfERG). Doc. Ophthalmol. 2012;124:1—13.
12. McCulloch D.L. e. a. ISCEV Standard for Full-field Clinical Electroretinograph. Doc. Ophthalmol. 2015;130:1—12.
13. Bach M. e. a. ISCEV Standard for Clinical Pattern Electroretinography (PERG). Doc. Ophthalmol. 2013;124:1—13.
14. Yagodkina T.V., Besedin V.M. Teoriya Avtomaticheskogo Upravleniya. M.: Izd-vo Yurayt, 2018. (in Russian).
15. Ango A. Matematika dlya Elektro- i Radioinzhenerov. M.: Nauka, 1967. (in Russian).
16. Kolosov O.S., Korolenkova V.A., Pronin A.D., Titova O.D. Preobrazovanie Periodicheskikh Vremennykh Zavisimostey dlya Rasshireniya Priznakovogo Prostranstva v Zadachakh Diagnostiki Sostoyaniya Dinamicheskikh Ob′ektov. Vestnik MEI. 2020;3:81—91. (in Russian).
17. Sergienko A.B. Tsifrovaya Obrabotka Signalov. SPb. BKHV-Peterburg, 2013. (in Russian).
18. Sviridov V.G., Sviridov E.V., Filaretov G.F. Osnovy Avtomatizatsii Teplofizicheskogo Eksperimenta. M.: Izdat. Dom MEI, 2019. (in Russian)
---
For citation: Aleksandrova Yu.S., Balarev D.A., Kolosov O.S., Ovivyan A.V., Parfenova O.I. Setting up the Attribute Space of Periodic Time Dependencies for Dynamic Object Diagnostic Systems (Taking the Eye Retina as an Example). Bulletin of MPEI. 2021;6:100—107. (in Russian). DOI: 10.24160/1993-6982-2021-6-100-107
---
The work is executed at support: RFBR (Project No. 19-01-00143)
Published
2021-03-31
Section
System Analysis, Management and Information Processing (05.13.01)