Application of the Signal Change Tracking Algorithm in the Hydraulic Shock Absorber Monitoring System

  • Андрей [Andrey] Андреевич [A.] Шилов [Shilov]
  • Алексей [Aleksey] Николаевич [N.] Черняев [Chernyaev]
Keywords: sensor sticking, credibility improvement, monitoring system, nuclear power plant

Abstract

During nuclear power plant (NPP) operation, the reactor plant main equipment can show displacements when subjected to the effect of various external and internal loads. These displacements are mainly caused by thermal expansion of the metal and seismic loads. To cope with these phenomena, the reactor plant components that are most susceptible to these types of loads are fastened with hydraulic shock absorbers (HSAs) to limit their displacements under the effect of seismic or accident dynamic loads, as well as to ensure thermal displacements in increasing or decreasing the power unit output. For monitoring the HSA operation and indirectly monitoring the displacements of the reactor plant equipment items fastened with hydraulic shock absorbers, the dedicated hydraulic shock absorber monitoring system (HSAMS) is used, which is equipped with linear displacement sensors installed directly on the HSAs. If the displacements go beyond the predetermined limits, the HSAMs algorithms produce an appropriate alarm. The information from the HSAMS is also used by the automated residual lifetime monitoring system (ARLMS) to calculate the steam generator connection pipe displacement criteria parameters.

However, during the operation of a number of NPP power units, a problem associated with numerous failures of the HSAMS linear displacement sensors has been faced. These failures manifested themselves in that the sensor signals went beyond the valid range or frozen under the effect of external influencing factors. As a result, the HSAMS and ARLMS operation was complicated by a large number of unreliable measurements and the functions of these systems were not performed in a proper way.

To solve this problem, it has been proposed to use an algorithm for tracking signal changes, which can improve the credibility of HSAMS indications by determining unreliable data in the online mode and by performing statistical processing of the already available array of indications.

Information about authors

Андрей [Andrey] Андреевич [A.] Шилов [Shilov]

Ph.D-student, Assistant of Automated Control Systems for Thermal Processes Dept., NRU MPEI, e-mail: shilovandreyandrevich@yandex.ru

Алексей [Aleksey] Николаевич [N.] Черняев [Chernyaev]

Ph.D. (Techn.), Head of Automated Control Systems for Thermal Processes Dept., NRU MPEI

References

1. Бирбраер А.Н., Роледер А.Ю. Безопасность атомных электрических станций при экстремальных внешних воздействиях // Биосфера. 2010. Т. 2. № 2. С. 197—213.
2. Богачев А.В. и др. Внедрение системы автоматизированного контроля остаточного ресурса совместно с системой контроля гидроамортизаторов на этапе продления срока службы энергоблока // Тяжелое машиностроение 2016. № 7—8. С. 51—58.
3. Браганец С.А., Савчиц А.В., Севастьянов Б.Г. Повышение надежности измерительной информации // Промышленные АСУ и контроллеры. 2011. № 2. С. 46—49.
4. Громов Ю.Ю., Драчёв В.О., Мартемьянов Ю.Ф., Войтюк В.В., Громова А.Ю. Контроль и повышение достоверности информации при функционировании ИС // Информация и безопасность. 2010. № 2. С. 227—232.
5. Юнусова Л.Р., Магсумова А.Р. Фильтрация шумов // Научный журнал. 2020. № 2(47). С. 29—33.
6. Федотов А.В. Теория и расчет индуктивных датчиков перемещений для систем автоматического контроля. Омск: Изд-во ОмГТУ, 2011.
7. Гуляев А.П. Металловедение. М.: Металлургия, 1986. С. 257—259.
8. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М.: Энергия, 1969.
9. Сивухин Д.В. Термодинамика и молекулярная физика Т. II. Общий курс физики. М.: Наука, 1990.
10. Веселова И.Н., Козырев В.Д. Система контроля за тепловыми перемещениями трубопроводов // Глобальная ядерная безопасность. 2012. № 4(5). С. 82—87.
11. Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974. С. 12
---
Для цитирования: Шилов А.А., Черняев А.Н. Применение алгоритма обнаружения изменения сигнала в системе контроля гидроамортизаторов // Вестник МЭИ. 2021. № 6. С. 132—136. DOI: 10.24160/1993-6982-2021-6-132-136
#
1. Birbraer A.N., Roleder A.Yu. Bezopasnost' Atomnykh Elektricheskikh Stantsiy pri Ekstremal'nykh Vneshnikh Vozdeystviyakh. Biosfera. 2010;2;2:197—213. (in Russian).
2. Bogachev A.V. i dr. Vnedrenie sistemy Avtomatizirovannogo Kontrolya Ostatochnogo Resursa Sovmestno s Sistemoy Kontrolya Gidroamortizatorov na Etape Prodleniya Sroka Sluzhby Energobloka. Tyazheloe Mashinostroenie 2016;7—8:51—58. (in Russian).
3. Braganets S.A., Savchits A.V., Sevast'yanov B.G. Povyshenie Nadezhnosti Izmeritel'noy Informatsii. Promyshlennye ASU i Kontrollery. 2011;2:46—49. (in Russian).
4. Gromov Yu.Yu., Drachev V.O., Martem'yanov Yu.F., Voytyuk V.V., Gromova A.Yu. Kontrol' i Povyshenie Dostovernosti Informatsii pri Funktsionirovanii IS. Informatsiya i Bezopasnost'. 2010;2:227—232. (in Russian).
5. Yunusova L.R., Magsumova A.R. Fil'tratsiya Shumov. Nauchnyy Zhurnal. 2020;2(47):29—33. (in Russian).
6. Fedotov A.V. Teoriya i Raschet Induktivnykh Datchikov Peremeshcheniy dlya Sistem Avtomaticheskogo Kontrolya. Omsk: Izd-vo OmGTU, 2011. (in Russian).
7. Gulyaev A.P. Metallovedenie. M.: Metallurgiya, 1986:257—259. (in Russian).
8. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha. M.: Energiya, 1969. (in Russian).
9. Sivukhin D.V. Termodinamika i Molekulyarnaya Fizika T. II. Obshchiy Kurs Fiziki. M.: Nauka, 1990. (in Russian).
10. Veselova I.N., Kozyrev V.D. Sistema Kontrolya za Teplovymi Peremeshcheniyami Truboprovodov. Global'naya Yadernaya Bezopasnost'. 2012;4(5):82—87. (in Russian).
11. Novikova S.I. Teplovoe Rasshirenie Tverdykh Tel. M.: Nauka, 1974:12. (in Russian)
---
For citation: Shilov A.A., Chernyaev A.N. Application of the Signal Change Tracking Algorithm in the Hydraulic Shock Absorber Monitoring System. Bulletin of MPEI. 2021;6:132—136. (in Russian). DOI: 10.24160/1993-6982-2021-6-132-136
Published
2021-05-21
Section
Automation and Control of Technological Processes and Production (05.13.06)