Investigation and Calculation of Electric Scooter Electromechanical Characteristics
Abstract
The design of an electric scooter is presented. The advisability of using an inverted motor with an external rotor, which is part of the wheel, is shown. Permanent magnets producing a large number of pole pairs are installed on the rotor inner surface facing the air gap. With such design, low scooter motion speeds can be obtained without the need of using mechanical gearboxes. The choice of the rotor main dimensions based on the specific tangential force is considered. The stator consists of a core body with a winding, usually a three-phase one. In scooter motors, it is advisable to use a concentrated winding with a fractional q, which is wound around the tooth to form a separate coil on it, belonging to one of the phases. In such winding, the end turns do not intersect; its end-winding parts are much shorter than they are in distributed windings. The stator winding is powered by an inverter controlled synchronously with the rotor rotation. The considered electromechanical converter is nothing but a conventional synchronous machine. Constant torque operation is not typical for the scooter motor. When the user changes the scooter operation mode, for example, in changing over to another track section, all processes develop similarly to those that take place in conventional DC motors. To confirm this, the calculation of the motor is given, and its parameters are determined. An algorithm for calculating the scooter mechanical and performance characteristics has been developed.
References
2. Смилянец Л.В., Литвиненко Т.П. Использование индивидуальных экологичных транспортных средств в улично-дорожной структуре населенного пункта // Новые идеи нового века: Материалы Междунар. науч. конф. Хабаровск: Изд-во Тихоокеанского гос. ун-та, 2013. Т. 2. С. 428—433.
3. Агеев А.Н., Айтенов А.А., Чебоксаров А.Н. Классификация двухколесного электротранспорта в различных странах мира // Техника и технологии строительства. 2020. № 2(22). С. 4—8.
4. Грухлер Г. Кранц Й., Завишка Т. Системы электропривода для транспортных средств — концепции, примеры энергосбережения // Электротехнические и компьютерные системы. 2011. № 3(79). С. 123—127.
5. Ostroverkhov M. Trinchuk D. Study into Energy Efficiency of the Drive of Electric Vehicles with an Independent Power Supply Depending on the Configuration of the Power Source // Technology Audit and Production Reserves. 2018. V. 4. No. 1(42). Pp. 45—50.
6. Libert F. Design, Optimization and Comparison of Permanent Magnet Motors for a Low-speed Direct-driven mixer. Stockholm: Royal Institute of Technology, 2004.
7. Lindegger M. Economic Viability, Applications and Limits of Efficient Permanent Magnet Motors. Switzerland: Swiss Federal Office of Energy, 2009.
8. Шевченко А.Ф., Честюнина Т.В. Анализ магнитодвижущих сил дробных зубцовых обмоток электрических машин // Электротехника. 2009. № 12. C. 3—7.
9. Бухгольц Ю.Г., Приступ А.Г., Честюнина Т.В. К вопросу расчета индуктивностей дробных зубцовых обмоток // Электро. Электротехника, электроэнергетика, электротехническая промышленность. 2012. № 1. С. 48—52.
10. Евстратов А.Э. Обзор возможных систем управления электроприводом на базе синхронного двигателя с постоянными магнитами // Энергетика и энергосбережение: теория и практика: Сборник материалов I Всерос. науч.-практ. конф. Кемерово: Изд-во Кузбасского гос. техн. ун-та им. Т.Ф. Горбачева, 2014. С. 71.
11. Давыдкин М.Н. Разработка модели синхронного двигателя на постоянных магнитах для электропривода транспортных средств // Наука и производство Урала. 2016. № 12. С. 48—52.
12. Петров Г.Н. Электрические машины. Ч. 2. Асинхронные и синхронные машины. М.-Л.: Госэнергоиздат, 1968.
13. Копылов И.П. и др. Проектирование электрических машин. М.: Высшая школа, 2002.
14. Gieras Ja.E., Wing M. Permanent Magnet Motor Technology. N.-Y.: Marcel Dekker Inc, 2002.
---
Для цитирования: Соколова Е.М., Белов А.Д. Исследование и расчет электромеханических характеристик электросамоката // Вестник МЭИ. 2022. № 2. С. 77—85. DOI: 10.24160/1993-6982-2022-2-77-85.
#
1. McCallum R.W. e. a. Practical Aspects of Modern and Future Permanent Magnets. Annual Rev. Materials Research. 2014;44:451—477.
2. Smilyanets L.V., Litvinenko T.P. Ispol'zovanie Individual'nykh Ekologichnykh Transportnykh Sredstv v Ulichno-dorozhnoy Strukture Naselennogo Punkta. Novye Idei Novogo Veka: Materialy Mezhdunar. Nauch. Konf. Khabarovsk: Izd-vo Tikhookeanskogo Gos. Un-ta, 2013;2:428—433. (in Russian).
3. Ageev A.N., Aytenov A.A., Cheboksarov A.N. Klassifikatsiya Dvukhkolesnogo Elektrotransporta v Razlichnykh Stranakh Mira. Tekhnika i Tekhnologii Stroitel'stva. 2020;2(22):4—8. (in Russian).
4. Grukhler G. Krants Y., Zavishka T. Sistemy Elektroprivoda dlya Transportnykh Sredstv — Kontseptsii, Primery Energosberezheniya. Elektrotekhnicheskie i Komp'yuternye Sistemy. 2011;3(79):123—127. (in Russian).
5. Ostroverkhov M. Trinchuk D. Study into Energy Efficiency of the Drive of Electric Vehicles with an Independent Power Supply Depending on the Configuration of the Power Source. Technology Audit and Production Reserves. 2018;4;1(42):45—50.
6. Libert F. Design, Optimization and Comparison of Permanent Magnet Motors for a Low-speed Direct-driven mixer. Stockholm: Royal Institute of Technology, 2004.
7. Lindegger M. Economic Viability, Applications and Limits of Efficient Permanent Magnet Motors. Switzerland: Swiss Federal Office of Energy, 2009.
8. Shevchenko A.F., Chestyunina T.V. Analiz Magnitodvizhushchikh Sil Drobnykh Zubtsovykh Obmotok Elektricheskikh Mashin. Elektrotekhnika. 2009;12:3—7. (in Russian).
9. Bukhgol'ts Yu.G., Pristup A.G., Chestyunina T.V. K voprosu Rascheta Induktivnostey Drobnykh Zubtsovykh Obmotok. Elektro. Elektrotekhnika, Elektroenergetika, Elektrotekhnicheskaya Promyshlennost'. 2012;1:48—52. (in Russian).
10. Evstratov A.E. Obzor Vozmozhnykh Sistem Upravleniya Elektroprivodom na Baze Sinkhronnogo Dvigatelya s Postoyannymi Magnitami. Energetika i Energosberezhenie: Teoriya i Praktika: Sbornik Materialov I Vseros. Nauch.-prakt. Konf. Kemerovo: Izd-vo Kuzbasskogo Gos. Tekhn. Un-ta im. T.F. Gorbacheva, 2014:71. (in Russian).
11. Davydkin M.N. Razrabotka Modeli Sinkhronnogo Dvigatelya na Postoyannykh Magnitakh dlya Elektroprivoda Transportnykh Sredstv. Nauka i Proizvodstvo Urala. 2016;12:48—52. (in Russian).
12. Petrov G.N. Elektricheskie Mashiny. Ch. 2. Asinkhronnye i Sinkhronnye Mashiny. M.-L.: Gosenergoizdat, 1968. (in Russian).
13. Kopylov I.P. i dr. Proektirovanie Elektricheskikh Mashin. M.: Vysshaya Shkola, 2002. (in Russian).
14. Gieras Ja.E., Wing M. Permanent Magnet Motor Technology. N.-Y.: Marcel Dekker Inc, 2002.
---
For citation: Sokolova E.M., Belov A.D. Investigation and Calculation of Electric Scooter Electromechanical Characteristics. Bulletin of MPEI. 2022;2:77—85. (in Russian). DOI: 10.24160/1993-6982-2022-2-77-85.