DESIGNING ELECTRICAL MACHINES WITH A CROSS MAGNETIC FLUX

  • Владимир [Vladimir] Григорьевич [G.] Еременко [Eremenko]
  • Ольга [Olga] Александровна [A.] Кузьмичева [Kuzmicheva]
  • Олег [Oleg] Григорьевич [G.] Клочков [Klochkov]
  • Сергей [Sergey] Юрьевич [Yu.] Лебедев [Lebedev]
Keywords: motor-generator with a cross magnetic flux (CMFMG), machine basic size, permanent magnets

Abstract

For new application fields of electrical machines: a motor vehicle equipped with a hybrid power installation, a direct electric drive of the ship screw, and a wind generator with a gearless drive of the electric generator, a new design of a multipole electrical machine with permanent magnets is developed, featuring a high torque at low rotation speeds. Such a machine is referred to in the literature as a machine with a cross magnetic flux or a machine with a switched magnetic flux. This machine can be used in a motor and generator modes, which are controlled by power semiconductor switches. Two standard magnetic circuit arrangements are presented, which differ from each other in the number of permanent magnets on a pole. Ring stator windings are used in the majority of cases. The length of stator pole part interacting through the air gap with permanent magnets and determining the machine axial length and the magnetic core cross sections was adopted as the basic size determining the sizes of the machine and its winding. The basic calculation formula for the basic size is obtained in the form of a fourth root from the expression containing the machine torque. All other sizes of the magnetic core and windings are interrelated with the basic size through constant coefficients. The machine model in the Matlab computer program operating as a wind generator with variable electric load is presented. When switching loading towards increase and reduction Variations of rotation speed, torque, and power triggered by stepped changes of the load toward increasing and decreasing were recorded during simulation. For the 75 kW capacity level, the characteristics of this machine and earlier known types of machines were indicated, and it is shown that this machine has the minimum weight and volume and the maximum efficiency at rotation speeds close to of 570--610 rpm. Recommendations for using this machine as a motorized wheel for a hybrid transport power installation are given.

Information about authors

Владимир [Vladimir] Григорьевич [G.] Еременко [Eremenko]

Science degree: Dr.Sci. (Techn.)
Workplace dept. of Electrotechnical Complexes of Self-Contained Objects NRU MPEI
Occupation professor

Ольга [Olga] Александровна [A.] Кузьмичева [Kuzmicheva]

Workplace Electrical Complexes of Self-Contained Objects and Electrical Transport Dept., NRU MPEI
Occupation master

Олег [Oleg] Григорьевич [G.] Клочков [Klochkov]

Workplace JSC «Aeroelektromash»
Occupation Head of Electrical Machinery Dept.

Сергей [Sergey] Юрьевич [Yu.] Лебедев [Lebedev]

Workplace Electrical Complexes of Self-Contained Objects and Electrical Transport Dept., NRU MPEI
Occupation master

References

1. Gieras J.F., Wing M. Permanent magnet motor technology. NY.: Marcel Dekker. Inc, 2002.
2. Cosic A. Analysis of a novel transverse flux machine with a tubular cross-section for free piston energy converter application // Doctoral thesis. Stockholm (Sweden): KTH School of Electrical Eng., 2010.
3. Pat. № 5051641 USA. Transversal flow machine in accumulator arrangement, 1991.
4. Pat. № 6952068 USA. Fabricated components of transverse flux electric motors, 2005.
5. Persson M., Jansson P., Jack A.G., Mecrow B.C. Soft magnetic composite materials — use for electrical machines // Proc. IEEE Conf. Electr. Machines Drives. Durham (UK), 1995. P. 242 — 246.
6. Löwenstein L. Kurbelwellen-Starter-Generatoren auf der Basis von Reluktanzmaschinen // Thesis RWTH Aachen. Aachen, 2003.
7. Henneberger G., Bork M. Development of a transverse flux traction motor in a direct drive system// Proc. Intern. Conf. Electrical Machines. Helsinki (Finland), 2000. P. 1457 — 1460.
8. Wan Z., Ahmed A., Husain I., Muljadi E. A novel transverse flux machine for vehicle // Traction Appl., 2015. [Электрон. ресурс]. http://www.nrel.gov/docs/fy15osti/63661.pdf (дата обращения 11.08.16).
9. Popan A.D., Viorel I.A., Blissenbach R. A passive rotor transverse flux motor, 2002. [Электрон. ресурс]. http://szabol0.tripod.com/WorkshopVRM/Workshop_VRM_6.pdf (дата обращения 20.08.16).
10. Ustkoyuncu N., Ramu K. A performance comparison of conventional and transverse ux linear switched reluctance motors, 2015. [Электрон. ресурс]. http://journals.tubitak.gov.tr/elektrik/issues/elk-15-23-4/elk-23-4-4-1305-214.pdf (дата обращения 22.08.16).
11. Babazadeh A., Karimi H.R. Adaptive output tracking of transverse flux machines using neuro-fuzzy approach, 2006. [Электрон. ресурс]. http://www2.tku.edu.tw/~tkjse/9-2/9-2-5.pdf (дата обращения 15.08.16).
12. Ping Zheng e. a. Analysis and design of a transverse-flux dual rotor machine for power-split hybrid electric vehicle applications, 2013. [Электрон. ресурс].http://www.mdpi.com/ (дата обращения 11.08.16).
13. Huang S., Luo J., Lipo T.A. Analysis and evaluation of the transverse flux circumferential current machine, 1997. [Электрон. ресурс]. http://lipo.ece.wisc.edu/1997pub/97-30.pdf (дата обращения 01.08.16).
14. Ji-Young Lee e. a. Characteristic analysis of a permanent magnet transverse flux linear motor with spiral core, 2013. [Электрон. ресурс]. http://www.koreascience.or.kr/ (дата обращения 11.08.16).
15. Jiyoung Lee e. a. Comparison of transverse flux rotary machines with different stator core topologies, 2014. [Электрон. ресурс]. http://www.academia.edu/3795193/A_Comparison_of_Radial_and_Axial_Flux_Structures_in_Electrical_Machines (дата обращения 07.08.16).
16. Velicu S. e. a. Computer aided design (cad) of linear transverse flux motors used in drive of the machine tools, 2010. [Электрон. ресурс]. http://www.eng.upt.ro/auif/Lucrari_PDF2_2010/Velicu.pdf (дата обращения 03.08.16).
17. Dobzhanskyi O. Study on permanent magnet transverse flux machine [Электрон. ресурс].http://ieeexplore.ieee.org/document/7219443/ (дата обращения 05.08.16).
Published
2018-12-17
Section
Electrical Engineering (05.09.00)