A Lithium-Ion Storage Battery Life Monitoring System
Abstract
Practical implementation of a service life monitoring system for a large number of same-type lithium-ion storage batteries is considered. The purpose of the system is to timely produce an alarm when each battery exhausts its service life. Once the system produces this alarm, the spent battery should be replaced by a new one. The system includes dedicated chargers, storage batteries, and special devices in the form of service testers. The system operation principle is based on calculating the total charge transferred through the battery since the time of its manufacture. The charge is metered by means of chargers used to charge the batteries. The information about the transferred charge is stored in the memory of a microcontroller installed on a small printed circuit board, which is built into the case of each battery during its manufacture. When the total charge transferred by the battery reaches a predetermined threshold, a service life exhaustion signal is produced. Such battery should be taken out of service and replaced by a new one. The total charge threshold value is calculated in advance based on the data specified by the manufacturer in the battery cell data sheet. The service tester reads out the transferred charge value from the battery microcontroller memory and indicates the remaining battery life in percentage terms. The proposed system is relatively simple and cheap; it has accuracy sufficient for practical use and has proven its high reliability and efficiency in being used with real equipment.
References
2. Qingxia Yanga, Jun Xua, Binggang Caoa, Dan Xua, Xiuqing Lib, Bin Wanga. State-of-health Estimation of Lithium-ion Battery Based on Interval Capacity // J. Energy Proc. 2017. V. 105. Pp. 2342—2347.
3. Добрего К.B., Бладыко Ю.В. Моделирование аккумуляторных батарей и их сборок с учетом деградации параметров // Известия высших учебных заведений и энергетических объединений СНГ. Серия «Энергетика». 2021. Т. 64(1). С. 27—39.
4. Dobrego K.V., Bladyko V.V. Modeling of Batteries and Their Assemblies Taking into Account the Degradation of Parameters // Proc. of CIS Higher Education Institutions and Power Engineering Associations. 2021. V. 64(1). Pp. 27—39.
5. Atalay S. e. a. Theory of Battery Ageing in a Lithium-ion Battery: Capacity Fade, Nonlinear Ageing and Lifetime Prediction // J. Power Sources. 2020. V. 478. P. 229026.
6. Weiping Diao e. a. Energy State of Health Estimation for Battery Packs Based on the Degradation and Inconsistency // J. Energy Proc. 2017. V. 142. Pp. 3578—3583.
7. Kong Soon Ng, Chin-Sien Moo, Yi-Ping Chen, Yao-Ching Hsieh. Enhanced Coulomb Counting Method for Estimating State-of-charge and State-of-health of Lithium-ion batteries // J. Appl. Energy. 2009. V. 86-9. Pp. 1506—1511.
8. Техническое описание аккумуляторов Samsung ICR18650-26F [Электрон. ресурс] www.yarst.org/data/1/ICR18650-26F.pdf (дата обращения 31.01.2022).
9. ООО «Яростанмаш» [Офиц. сайт] www.yarst.org/ (дата обращения 31.01.2022).
10. Результаты стендовых испытаний Li-Ion аккумуляторов различных типов [Электрон. ресурс] www.yarst.org/data/1/data.zip (дата обращения 31.01.2022).
---
Для цитирования: Меньшиков Я.А. Система мониторинга ресурса литий-ионных аккумуляторных батарей // Вестник МЭИ. 2022. № 3. С. 105—110. DOI: 10.24160/1993-6982-2022-3-105-110.
#
1. Zhenpo Wang, Chunbao Song, Changgui Yuan, Xiaoyu Li. A Flexible Method for State-of-health Estimation of Lithium Battery Energy Storage System. J. Energy Rep. 2021;7:6375—6383. (in Russian).
2. Qingxia Yanga, Jun Xua, Binggang Caoa, Dan Xua, Xiuqing Lib, Bin Wanga. State-of-health Estimation of Lithium-ion Battery Based on Interval Capacity. J. Energy Proc. 2017;105:2342—2347.
3. Dobrego K.B., Bladyko Yu.V. Modelirovanie Akkumulyatornykh Batarey i Ikh Sborok s Uchetom Degradatsii Parametrov. Izvestiya Vysshikh Uchebnykh Zavedeniy i Energeticheskikh Obedineniy SNG. Seriya «Energetika». 2021;64(1):27—39. (in Russian).
4. Dobrego K.V., Bladyko V.V. Modeling of Batteries and Their Assemblies Taking into Account the Degradation of Parameters. Proc. of CIS Higher Education Institutions and Power Engineering Associations. 2021;64(1):27—39.
5. Atalay S. e. a. Theory of Battery Ageing in a Lithium-ion Battery: Capacity Fade, Nonlinear Ageing and Lifetime Prediction. J. Power Sources. 2020;478:229026.
6. Weiping Diao e. a. Energy State of Health Estimation for Battery Packs Based on the Degradation and Inconsistency. J. Energy Proc. 2017;142:3578—3583.
7. Kong Soon Ng, Chin-Sien Moo, Yi-Ping Chen, Yao-Ching Hsieh. Enhanced Coulomb Counting Method for Estimating State-of-charge and State-of-health of Lithium-ion batteries. J. Appl. Energy. 2009;86-9:1506—1511.
8. Tekhnicheskoe Opisanie Akkumulyatorov Samsung ICR18650-26F [Elektron. Resurs] www.yarst.org/data/1/ICR18650-26F.pdf (Data Obrashcheniya 31.01.2022). (in Russian).
9. OOO «Yarostanmash» [Ofits. Sayt] www.yarst.org/ (Data Obrashcheniya 31.01.2022). (in Russian).
10. Rezul'taty Stendovykh Ispytaniy Li-Ion Akkumulyatorov Razlichnykh Tipov [Elektron. Resurs] www.yarst.org/data/1/data.zip (Data Obrashcheniya 31.01.2022). (in Russian).
---
For citation: Menshikov Ia.A. A Lithium-Ion Storage Battery Life Monitoring System. Bulletin of MPEI. 2022;3:105—110. (in Russian). DOI: 10.24160/1993-6982-2022-3-105-110.