Resulting Voltage Vector Moduli of Discrete States and Their Relationship with the Line-to-line Voltages of a Seven-phase Symmetrical Winding
Abstract
A seven-phase valve converter connected to a symmetrical seven-phase winding has 126 logical states and can produce 126 discrete resulting voltage vectors. The converter state digital codes have the form (0000001-1111110), and the moduli of these vectors have eight values. The aim of the study is to define a numerical relationship between the resulting voltage vector moduli of discrete states and the line-to-line voltage ratios of a seven-phase symmetrical winding. The resulting voltage vector moduli of discrete states correspond to the moduli of the continuous rotation vectors obtained by expanding the corresponding phase voltage functions in the Fourier series. In carrying out the study, the vector analysis methods were used. The obtained results can be useful in designing an electric drive based on a seven-phase motor with vector control.
References
2. Vosswinkel М., Lohner А. Desing of Gearless Wheel Hub Motor for BEV Based on a Switched Reluctance Machine // Proc. EVS30 Symp. Stuttgart, 2017.
3. Vosswinkel М. e. a. Design, Production, and Verification of a Switched-reluctance Wheel Hub Drive Train for Battery Electric Vehicles // World Electric Vehicle J. 2019. V. 10(4). Pp. 82—96.
4. Электровоз грузовой постоянного тока 2ЭС10 (Гранит) с асинхронными тяговыми электродвигателями [Электрон. ресурс] www.twirpx.com/search (дата обращения 23.01.2022).
5. Gonzalez-Prieto A. e. a. Symmetrical Six-phase Induction Machines: a Solution for Multiphase Direct Control Strategies // Proc. IEEE Intern. Conf. Industrial Technology. 2021. Pp. 1362—1367.
6. Gonzalez-Prieto A., Gonzalez-Prieto I., Duran M.J. Smart Voltage Vectors for Model Predictive Control of Six-phase Electric Drives // IEEE Trans. Industrial Electronics. 2021. V. 68(10). Pp. 9024—9035.
7. Rubino S., Dordevic O., Bojoi R., Levi E. Modular Vector Control of Multi-three-phase Permanent Magnet Synchronous Motors // Ibid. Pp. 9136—9147.
8. Slunjski M., Stiscia O., Jones M., Levi E. General Torque Enhancement Approach for a Nine-phase Surface PMSM with Built-in Fault Tolerance // IEEE Trans. Industrial Electronics. 2021. V. 68(8). Pp. 6412—6423.
9. Bermúdez M., Barrero F., Martín C., Perales M. Performance Analysis of Direct Torque Controllers in Five-phase Electrical Drives // Appl. Sci. 2021. V. 11(24). P. 11964.
10. Yepes A.G., Doval-Gandoy J. Overmodulation Method with Adaptive x-y Current Limitation for Five-phase Induction Motor Drives // IEEE Trans. Industrial Electronics. 2022. V. 69(3). Pp. 2240—2251
11. Голубев А.Н., Алейников А.В. Алгоритм управления, улучшающий вибросиловые характеристики многофазного магнитоэлектрического электропривода // Вестник Ивановского гос. энергетического ун-та. 2021. № 6. С. 38—44.
12. Алейников А.В., Голубев А.Н. Разработка алгоритма управления, уменьшающего вибрации многофазного синхронного электродвигателя // Актуальные проблемы электроэнергетики. Нижний Новгород: Изд-во Нижегородского гос. техн. ун-та им. Р.Е. Алексеева, 2021. С. 69—75.
13. Терешкин В.М., Гришин Д.А., Баландин С.П., Терешкин В.В. Обзор и классификация пространственно-временных векторов дискретных состояний семифазного преобразователя // Журнал технической физики. 2022. Т. 92. № 1. С. 138—146.
14. Терешкин В.М., Гришин Д.А., Баландин С.П., Терешкин В.В. Варианты формирования симметричного выходного напряжения вентильного преобразователя // Вестник МЭИ. 2022. № 1. С. 85—93
15. Терешкин В.М., Гришин Д.А., Терешкин В.В., Балгазин И.И. Алгоритмы управления пятифазного преобразователя, реализующие пространственно-векторную модуляцию // Вестник МЭИ. 2021. № 4. С. 86—94.
---
Для цитирования: Терешкин В.М., Гришин Д.А., Сергеев Н.А., Терешкин В.В. Модули результирующих векторов напряжения дискретных состояний и их связь с величинами линейных напряжений семифазной симметричной обмотки // Вестник МЭИ. 2022. № 3. С. 111—119. DOI: 10.24160/1993-6982-2022-3-111-119.
#
1. Electric Vehicles — Analysis — IEA [Elektron. Resurs] www.iea.org/reports/electric-vehicles (Data Obrashcheniya 23.01.2022).
2. Vosswinkel М., Lohner А. Desing of Gearless Wheel Hub Motor for BEV Based on a Switched Reluctance Machine. Proc. EVS30 Symp. Stuttgart, 2017.
3. Vosswinkel М. e. a. Design, Production, and Verification of a Switched-reluctance Wheel Hub Drive Train for Battery Electric Vehicles. World Electric Vehicle J. 2019;10(4):82—96.
4. Elektrovoz Gruzovoy Postoyannogo Toka 2ES10 (Granit) s Asinkhronnymi Tyagovymi Elektrodvigatelyami [Elektron. Resurs] www.twirpx.com/search (Data Obrashcheniya 23.01.2022). (in Russian).
5. Gonzalez-Prieto A. e. a. Symmetrical Six-phase Induction Machines: a Solution for Multiphase Direct Control Strategies. Proc. IEEE Intern. Conf. Industrial Technology. 2021:1362—1367.
6. Gonzalez-Prieto A., Gonzalez-Prieto I., Duran M.J. Smart Voltage Vectors for Model Predictive Control of Six-phase Electric Drives. IEEE Trans. Industrial Electronics. 2021;68(10):9024—9035.
7. Rubino S., Dordevic O., Bojoi R., Levi E. Modular Vector Control of Multi-three-phase Permanent Magnet Synchronous Motors. Ibid:9136—9147.
8. Slunjski M., Stiscia O., Jones M., Levi E. General Torque Enhancement Approach for a Nine-phase Surface PMSM with Built-in Fault Tolerance. IEEE Trans. Industrial Electronics. 2021;68(8):6412—6423.
9. Bermúdez M., Barrero F., Martín C., Perales M. Performance Analysis of Direct Torque Controllers in Five-phase Electrical Drives. Appl. Sci. 2021;11(24):11964.
10. Yepes A.G., Doval-Gandoy J. Overmodulation Method with Adaptive x-y Current Limitation for Five-phase Induction Motor Drives. IEEE Trans. Industrial Electronics. 2022;69(3):2240—2251
11. Golubev A.N., Aleynikov A.V. Algoritm Upravleniya, Uluchshayushchiy Vibrosilovye Kharakteristiki Mnogofaznogo Magnitoelektricheskogo Elektroprivoda. Vestnik Ivanovskogo Gos. Energeticheskogo Un-ta. 2021;6:38—44. (in Russian).
12. Aleynikov A.V., Golubev A.N. Razrabotka Algoritma Upravleniya, Umen'shayushchego Vibratsii Mnogofaznogo Sinkhronnogo Elektrodvigatelya. Aktual'nye Problemy Elektroenergetiki. Nizhniy Novgorod: Izd-vo Nizhegorodskogo Gos. Tekhn. Un-ta im. R.E. Alekseeva, 2021:69—75. (in Russian).
13. Tereshkin V.M., Grishin D.A., Balandin S.P., Tereshkin V.V. Obzor i Klassifikatsiya Prostranstvenno-vremennykh Vektorov Diskretnykh Sostoyaniy Semifaznogo Preobrazovatelya. Zhurnal Tekhnicheskoy Fiziki. 2022;92;1:138—146. (in Russian).
14. Tereshkin V.M., Grishin D.A., Balandin S.P., Tereshkin V.V. Varianty Formirovaniya Simmetrichnogo Vykhodnogo Napryazheniya Ventil'nogo Preobrazovatelya. Vestnik MEI. 2022;1:85—93 (in Russian).
15. Tereshkin V.M., Grishin D.A., Tereshkin V.V., Balgazin I.I. Algoritmy Upravleniya Pyatifaznogo Preobrazovatelya, Realizuyushchie Prostranstvenno-vektornuyu Modulyatsiyu. Vestnik MEI. 2021;4:86—94. (in Russian).
---
For citation: Tereshkin V.M., Grishin D.A., Sergeev N.A., Tereshkin V.V. Resulting Voltage Vector Moduli of Discrete States and Their Relationship with the Line-to-line Voltages of a Seven-phase Symmetrical Winding. Bulletin of MPEI. 2022;3:111—119. (in Russian). DOI: 10.24160/1993-6982-2022-3-111-119.