A Small Capacity Methane-Hydrogen Blend Fueled Gas Turbine

  • Баидаа [Baydaa] Бу Дакка [Bo Dakkah]
  • Ильдар [I′ldar] Айдарович [A.] Султангузин [Sultanguzin]
  • Юрий [Yuriy] Викторович [V.] Яворовский [Yavorovsky]
  • Михаил [Mikhail] Григорьевич [G.] Жумагулов [Zhumagulov]
  • Нурлан [Nurlan] Режепбаевич [R.] Картджанов [Kartdzhanov]
Keywords: hydrogen, fuel admission system, micro gas turbine unit

Abstract

Nowadays the environmental problem is of issue for many scientists around the world. This is stemming from climate changes caused by greenhouse gas emissions (the industrial sector accounts for 50% of them). Therefore, urgent measures have to be taken to reduce the emissions of these gases significantly. In this connection, we are witnessing a worldwide trend toward predominant use of renewable energy sources, with the hydrogen energy being the most significant one of them.

The aim of the work was to study the effect an addition of hydrogen to methane as fuel has on the thermal characteristics of a 100 kWe micro gas turbine unit and on the geometrical dimensions of the fuel admission device at constant values of the volumetric flow rates of air supplied and flue combustion gases generated in the same installation.

The study, which was carried out using the EPSILON computer program, has shown that the addition of hydrogen to methane leads to an increase in the volumetric fuel flowrate and, hence, generates the need to increase the fuel admission device cross-section area. An increase in the percentage content of hydrogen leads to a decrease of temperatures upstream of the turbine by no more than 12°C. If methane is completely replaced by hydrogen, the power unit efficiency decreases by only 1%. Thus, the thermal characteristics of the micro gas turbine unit under study do not change significantly; however, the design of the fuel injection device has to be modified.

Information about authors

Баидаа [Baydaa] Бу Дакка [Bo Dakkah]

Ph.D.-student of Industrial Heat Engineering System Dept., NRU MPEI, e-mail: Budakka@mpei.ru

Ильдар [I′ldar] Айдарович [A.] Султангузин [Sultanguzin]

Dr.Sci. (Techn.), Professor of Industrial Heat Engineering System Dept., NRU MPEI, e-mail: SultanguzinIA@mpei.ru

Юрий [Yuriy] Викторович [V.] Яворовский [Yavorovsky]

Ph.D. (Techn.), Head of Industrial Heat Engineering System Dept., NRU MPEI, e-mail: YavorovskyYV@mpei.ru

Михаил [Mikhail] Григорьевич [G.] Жумагулов [Zhumagulov]

PhD, Associate Professor, Assistant Professor of Thermal Power Engineering Dept., L.N. Gu-milyov Eurasian National University, Nur-Sultan, Kazakhstan, e-mail: mikelike2000@yandex.ru

Нурлан [Nurlan] Режепбаевич [R.] Картджанов [Kartdzhanov]

Doctoral Student of Thermal Power Engineering Dept., L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan, e-mail: nurlanke16@gmail.com

References

1. Alliche M., Chikh S. Study of Non-premixed Turbulent Flame of Hydrogen/air Downstream Co-current Iinjector // Hydrogen Energy. 2018. V. 43. No. 6. Pp. 3577—3585.
2. Minakawa K., Miyajima T., Yuasa S. Development of a Hydrogen-fueled Micro Gas Turbine with a Lean Premixed Combustor // Proc. 33rd Jt. Propuls. Conf. Exhib. 1997. Pp. 1—6.
3. Schefer R.W. Reduced Turbine Emissions Using Hydrogen-Enriched Fuels // Proc. Hydrog. Progr. Rev. 2002. Pp. 1—16.
4. Mostafaeipour A. e. a. Localization of Solar-hydrogen Power Plants in the Province of Kerman // Adv. Energy Res. 2017. V. 5. No. 2. Pp. 179—205.
5. Menia S. e. a. Hydrogen Production by Methanol Aqueous Electrolysis Using Photovoltaic Energy: Algerian Potential // Hydrogen Energy. 2017. V. 42. No. 13. Pp. 8661—8669.
6. Gökalp I., Lebas E. Alternative Fuels for Industrial Gas Turbines // Appl. Therm. Eng. 2004. V. 24. No. 11—12. Pp. 1655—1663.
7. Буров В.Д., Савитенко М.А., Рыбаков Б.А. Сжигание водородосодержащих газов в газотурбинных установках // Турбины и дизели. 2021. № 3—4. С. 16.—24.
8. Cappelletti A., Martelli F. Investigation of a Pure Hydrogen Fueled Gas Turbine Burner // Hydrogen Energy. 2017. V. 42. No. 15. Pp. 10513—10523.
9. Juste G.L. Hydrogen Injection as Additional Fuel in Gas Turbine Combustor. Evaluation of Effects // Hydrogen Energy. 2006. V. 31. No. 14. Pp. 2112—2121.
10. Schefer R.W., White C., Keller J. Lean Hydrogen Combustion // Lean Combustion. N.-Y.: Elsevier, 2008. Pp. 213—254.
11. Kim H.S., Arghode V.K., Gupta A.K. Flame Сharacteristics of Hydrogen-enriched Methane–air Premixed Swirling Flames // Hydrogen Energy. V. 34. No. 2. Pp. 1063—1073.
12. Chacartegui R. e. a. Analysis of Main Gaseous Emissions of Heavy Duty Gas Turbines Burning Several Syngas Fuels // Fuel Proc. Technol. 2011. V. 92. No. 2. Pp. 213—220.
13. De Robbio R. Innovative Combustion Analysis of a Micro-gas Turbine Burner Supplied with Hydrogen-natural Gas Mixtures // Energy Proc. 2017. V. 126. Pp. 858—866.
14. Reale F. e. a. A Micro-gas Turbine Fuelled by Methane-hydrogen Blends // Appl. Mech. Mater. 2012. V. 232. Pp. 792—796, 2012.
15. Tuccillo R. e. a. Methane-hydrogen Blends in Micro-gas Turbines: Comparison of Different Combustor Concepts. // Proc. Turbomachinery Techn. Conf. and Exposition. 2019. V. 8.
16. Reale F., Sannino R. Water and Steam Injection in Micro-gas Turbine Supplied by Hydrogen Enriched Fuels: Numerical Investigation and Performance Analysis // Hydrogen Energy. 2021. V. 46. No. 47. Pp. 24366—24381.
17. Frolov S.M., Medvedev S.N., Basevich V.Y., Frolov F.S. Self-ignition of Hydrocarbon–hydrogen–air mixtures // Hydrogen Energy. 2013. V. 38. No. 10. Pp. 4177—4184.
18. Rudy W., Dabkowski A., Teodorczyk A. Experimental and Numerical Study on Spontaneous Ignition of Hydrogen and Hydrogen-methane Jets in Air // Hydrogen Energy. 2014. V. 39. No. 35. Pp. 20388—20395.
19. Савитенко М.А., Рыбаков Б.А. Снижение выбросов парниковых газов в водогрейных и паровых котлах // Энергетика и промышленность России. 2021. № 17—18. С. 420—421.
20. Бу Дакка Б., Султангузин И.А., Яворовский Ю.В. Рекуперация тепла с использованием органического цикла Ренкина // Вестник МЭИ. 2021. № 5. С. 51—57.
21. Bo Dakkah B. e. a Experimental Study of the Recovery of Low Heat Using the Organic Rankine Cycle // Proc. III Intern. Youth Conf. Radio Electronics and Electrical and Power Eng. 2021. Pp. 1—5.
22. Bo Dakkah B. e. a. Choosing the Suitable Working Fluid to Recover Heat from Low-temperature Sources // Ibid. Pp. 1—5.
23. Ilbas M., Yilmaz I. Experimental Analysis of the Effects of Hydrogen Addition on Methane Combustion // Energy Res. 2012. V. 36. No. 5. Pp. 643—647.
24. Momin E.A. e. a. Regenerative Gas Turbine Power Plant: Performance & Evaluation // Proc. 25th Intern. Compressor Eng. Conf. Purdue, 2021. Pp. 1—12.
25. Reale F., Iannotta V., Tuccillo R. Numerical Study of a Micro-gas Turbine Integrated with a Supercritical CO2 Brayton Cycle Turbine // Proc. Turbomachinery Techn. Conf. and Exposition. 2018
---
Для цитирования: Баидаа Бу Дакка, Султангузин И.А., Яворовский Ю.В., Жумагулов М.Г., Картжанов Н.Р. Газотурбинная установка малой мощности на метано-водородном топливе // Вестник МЭИ. 2022. № 5. С. 91—100. DOI: 10.24160/1993-6982-2022-5-91-100
#
1. Alliche M., Chikh S. Study of Non-premixed Turbulent Flame of Hydrogen/air Downstream Co-current Iinjector. Hydrogen Energy. 2018;43;6:3577—3585.
2. Minakawa K., Miyajima T., Yuasa S. Development of a Hydrogen-fueled Micro Gas Turbine with a Lean Premixed Combustor. Proc. 33rd Jt. Propuls. Conf. Exhib. 1997:1—6.
3. Schefer R.W. Reduced Turbine Emissions Using Hydrogen-Enriched Fuels. Proc. Hydrog. Progr. Rev. 2002:1—16.
4. Mostafaeipour A. e. a. Localization of Solar-hydrogen Power Plants in the Province of Kerman. Adv. Energy Res. 2017;5;2:179—205.
5. Menia S. e. a. Hydrogen Production by Methanol Aqueous Electrolysis Using Photovoltaic Energy: Algerian Potential. Hydrogen Energy. 2017;42;13:8661—8669.
6. Gökalp I., Lebas E. Alternative Fuels for Industrial Gas Turbines. Appl. Therm. Eng. 2004;24;11—12:1655—1663.
7. Burov V.D., Savitenko M.A., Rybakov B.A. Szhiganie Vodorodosoderzhashchikh Gazov v Gazoturbinnykh Ustanovkakh. Turbiny i Dizeli. 2021;3—4:16.—24. (in Russian).
8. Cappelletti A., Martelli F. Investigation of a Pure Hydrogen Fueled Gas Turbine Burner. Hydrogen Energy. 2017;42;15:10513—10523.
9. Juste G.L. Hydrogen Injection as Additional Fuel in Gas Turbine Combustor. Evaluation of Effects. Hydrogen Energy. 2006;31;14:2112—2121.
10. Schefer R.W., White C., Keller J. Lean Hydrogen Combustion. Lean Combustion. N.-Y.: Elsevier, 2008:213—254.
11. Kim H.S., Arghode V.K., Gupta A.K. Flame Сharacteristics of Hydrogen-enriched Methane–air Premixed Swirling Flames. Hydrogen Energy;34;2:1063—1073.
12. Chacartegui R. e. a. Analysis of Main Gaseous Emissions of Heavy Duty Gas Turbines Burning Several Syngas Fuels. Fuel Proc. Technol. 2011;92;2:213—220.
13. De Robbio R. Innovative Combustion Analysis of a Micro-gas Turbine Burner Supplied with Hydrogen-natural Gas Mixtures. Energy Proc. 2017;126:858—866.
14. Reale F. e. a. A Micro-gas Turbine Fuelled by Methane-hydrogen Blends. Appl. Mech. Mater. 2012;232:792—796, 2012.
15. Tuccillo R. e. a. Methane-hydrogen Blends in Micro-gas Turbines: Comparison of Different Combustor Concepts.. Proc. Turbomachinery Techn. Conf. and Exposition. 2019;8.
16. Reale F., Sannino R. Water and Steam Injection in Micro-gas Turbine Supplied by Hydrogen Enriched Fuels: Numerical Investigation and Performance Analysis. Hydrogen Energy. 2021;46;47:24366—24381.
17. Frolov S.M., Medvedev S.N., Basevich V.Y., Frolov F.S. Self-ignition of Hydrocarbon–hydrogen–air mixtures. Hydrogen Energy. 2013;38;10:4177—4184.
18. Rudy W., Dabkowski A., Teodorczyk A. Experimental and Numerical Study on Spontaneous Ignition of Hydrogen and Hydrogen-methane Jets in Air. Hydrogen Energy. 2014;39;35:20388—20395.
19. Savitenko M.A., Rybakov B.A. Snizhenie Vybrosov Parnikovykh Gazov v Vodogreynykh i Parovykh Kotlakh. Energetika i Promyshlennost' Rossii. 2021;17—18:420—421. (in Russian).
20. Bu Dakka B., Sultanguzin I.A., Yavorovskiy Yu.V. Rekuperatsiya Tepla s Ispol'zovaniem Organicheskogo Tsikla Renkina. Vestnik MEI. 2021;5:51—57. (in Russian).
21. B Bo Dakkah e. a. Experimental Study of the Recovery of Low Heat Using the Organic Rankine Cycle. Proc. III Intern. Youth Conf. Radio Electronics and Electrical and Power Eng. 2021:1—5.
22. Bo Dakkah B. e. a. Choosing the Suitable Working Fluid to Recover Heat from Low-temperature Sources. Ibid:1—5.
23. Ilbas M., Yilmaz I. Experimental Analysis of the Effects of Hydrogen Addition on Methane Combustion. Energy Res. 2012;36;5:643—647.
24. Momin E.A. e. a. Regenerative Gas Turbine Power Plant: Performance & Evaluation. Proc. 25th Intern. Compressor Eng. Conf. Purdue, 2021:1—12.
25. Reale F., Iannotta V., Tuccillo R. Numerical Study of a Micro-gas Turbine Integrated with a Supercritical CO2 Brayton Cycle Turbine. Proc. Turbomachinery Techn. Conf. and Exposition. 2018
---
For citation: Baydaa Bo Dakkah, Sultanguzin I.A., Yavorovsky Yu.V., Zhumagulov M.G., Kartzhanov N.R. A Small Capacity Methane-Hydrogen Blend Fueled Gas Turbine. Bulletin of MPEI. 2022;5:91—100. (in Russian). DOI: 10.24160/1993-6982-2022-5-91-100
Published
2022-03-24
Section
Theoretical and Applied Heat Engineering (Technical Sciences) (2.4.6)