Analysis of the Minimum Electrical Load of Residential Apartment Buildings in Urban Power Supply Systems
Abstract
At present, a significant part of the studies of a residential apartment building electrical load concerns only the analysis of the maximum load at the residential building power supply input and on the buses of the transformer substation supplying power to residential buildings. However, for a complete analysis of the residential apartment building power consumption, it is necessary to evaluate not only the maximum input power, but also the minimum load. The article presents the results from an analysis of electricity consumption in residential apartment buildings with electric stoves (taking the city of Moscow as an example). The power consumption in eight residential apartment buildings recorded by electric meters in the input switchgears of these buildings at 30-min intervals for several years was used as input data for the analysis. The dynamics of minimum electrical load variation during a year is considered; the dependence of the minimum power on the outdoor temperature is estimated, and the time of the day, day of the week, and month in which the residential building minimum electrical load is observed are determined. The distribution law of a random variable represented by the time in which the absolute annual minimum of the residential building electrical load is observed and its characteristics: mathematical expectation and standard deviation are determined. The results of a comparative analysis of the absolute annual minimum and maximum (design) load at the input of residential apartment buildings are presented.
References
2. Российский статистический ежегодник [Офиц. сайт] https://gks.ru/bgd/regl/b20_13/Main.htm (дата обращения 05.07.2022).
3. Demidenko A., Kudelina S., Parfenov G., Shvedov G. Analysis of the Lighting Load Contribution in Modern Apartments // Proc. International Ural Conf. Electrical Power Eng. 2021. Pp. 168—172.
4. Олова Г.А., Медведев В.П., Сабельников Л.В., Воронина В.Н. Развитие мирового рынка кондиционеров воздуха бытового назначения // Российский внешнеэкономический вестник. 2021. № 4. С. 13—22.
5. Солуянов Ю.И., Ахметшин А.Р., Солуянов В.И. Энергоресурсосберегающий эффект в системах электроснабжения жилых комплексов от актуализации нормативов электрических нагрузок // Известия высших учебных заведений. Серия «Проблема энергетики». 2021. Т. 23. № 1. С. 156—166.
6. Shvedov G.V. e. a. Analysis of the Maximum Electrical Load of Multi-apartment Residential Buildings in the Power Supply Systems of Cities // Proc. 4th Intern. Youth Conf. Radio Electronics, Electrical and Power Eng. Moscow: NRU «MPEI», 2022.
7. Чернышова Т.И., Кобелев А.В., Кочергин С.В., Зяблов Н.М. Прогнозирование бытовой электрической нагрузки с применением нейронных сетей // Модели, системы, сети в экономике, технике, природе и обществе. 2017. № 1(21). C. 181—190.
8. Шведов Г.В. Электроснабжение городов: электропотребление, расчетные нагрузки, распределительные сети. M.: Издательский дом МЭИ, 2012.
9. Gismeteo [Офиц. сайт] https://www.gismeteo.ru/diary (дата обращения 05.07.2022).
10. Вентцель Е.С., Овчаров Л.А. Теория вероятностей и ее инженерные приложения. M.: Высшая школа, 2000.
---
Для цитирования: Морсин И.А., Шведов Г.В. Анализ наименьшей электрической нагрузки многоквартирных жилых домов в системах электроснабжения городов // Вестник МЭИ. 2022. № 6. С. 43—50. DOI: 10.24160/1993-6982-2022-6-43-50
#
1. Proedrou E. A Comprehensive Review of Residential Electricity Load Profile Models. IEEE Access. 2021;9:12114—12133.
2. Rossiyskiy Statisticheskiy Ezhegodnik [Ofits. Sayt] https://gks.ru/bgd/regl/b20_13/Main.htm (Data Obrashcheniya 05.07.2022). (in Russian).
3. Demidenko A., Kudelina S., Parfenov G., Shvedov G. Analysis of the Lighting Load Contribution in Modern Apartments. Proc. International Ural Conf. Electrical Power Eng. 2021:168—172.
4. Olova G.A., Medvedev V.P., Sabel'nikov L.V., Voronina V.N. Razvitie Mirovogo Rynka Konditsionerov Vozdukha Bytovogo Naznacheniya. Rossiyskiy Vneshneekonomicheskiy Vestnik. 2021;4:13—22. (in Russian).
5. Soluyanov Yu.I., Akhmetshin A.R., Soluyanov V.I. Energoresursosberegayushchiiy Effekt v Sistemakh Elektrosnabzheniya Zhilykh Kompleksov ot Aktualizatsii Normativov Elektricheskikh Nagruzok. Izvestiya Vysshikh Uchebnykh Zavedeniiy. Seriya «Problema Energetiki». 2021;23;1:156—166. (in Russian).
6. Shvedov G.V. e. a. Analysis of the Maximum Electrical Load of Multi-apartment Residential Buildings in the Power Supply Systems of Cities. Proc. 4th Intern. Youth Conf. Radio Electronics, Electrical and Power Eng. Moscow: NRU «MPEI», 2022.
7. Chernyshova T.I., Kobelev A.V., Kochergin S.V., Zyablov N.M. Prognozirovanie Bytovoy Elektricheskoy Nagruzki s Primeneniem Neyronnykh Setey. Modeli, Sistemy, Seti v Ekonomike, Tekhnike, Prirode i Obshchestve. 2017;1(21):181—190. (in Russian).
8. Shvedov G.V. Elektrosnabzhenie Gorodov: Elektropotreblenie, Raschetnye Nagruzki, Raspredelitel'nye Seti. M.: Izdatel'skiy Dom MEI, 2012. (in Russian).
9. Gismeteo [Ofits. Sayt] https://www.gismeteo.ru/diary (Data Obrashcheniya 05.07.2022). (in Russian).
10. Venttsel' E.S., Ovcharov L.A. Teoriya Veroyatnostey i ee Inzhenernye Prilozheniya. M.: Vysshaya Shkola, 2000. (in Russian)
---
For citation: Morsin I.A., Shvedov G.V. Analysis of the Minimum Electrical Load of Residential Apartment Buildings in Urban Power Supply Systems. Bulletin of MPEI. 2022;6:43—50. (in Russian). DOI: 10.24160/1993-6982-2022-6-43-50