Studying the Features of Streamer Formation and Development in Air by Using Computation Experiments

  • Андрей [Andrey] Анатольевич [A.] Белогловский [Beloglovsky]
  • Сергей [Sergey] Вячеславович [V.] Белоусов [Belousov]
  • Ангелина [Angelina] Владимировна [V.] Галимова [Galimova]
Keywords: streamer electric discharge in air, electric field structure, mathematical modeling, computational experiment

Abstract

The aim of the work is to estimate the relevance and current state of the problem of mathematical modeling of streamer discharges in air, as well as to identify the features pertinent to formation and initial development stage of two-head streamers in air by using computational experiments. The streamer discharge mathematical model developed at the National Research University Moscow Power Engineering Institute Department of High Voltage Engineering and Electrophysics was used as the research tool. It is shown that mathematical modeling of a streamer discharge can be effectively used in its studies and in training specialists in the field of electric power engineering and high-voltage electrical technologies. The article presents the results of computational experiments on studying the occurrence of streamers in a discharge gap filled with dry air with a uniform electric field (EF) under standard atmospheric conditions. The initial conditions were chosen so that a single-avalanche-streamer formation mechanism was realized. It is shown that in the considered range of initial conditions, the distance between the anode and initial inhomogeneity has a weak, within 1%, influence on the minimum and maximum values of electric field strength in the streamer. A different picture is observed on the anode surface. When a two-head streamer is formed in the discharge gap depth, the field strength at the anode remains close to the average strength in it. As the negative streamer head approaches the anode, the field strength on its surface increases to values close to those achieved in the positive head. After that, the field at the anode weakens rapidly to a level at which effective impact ionization becomes impossible. The article will be of interest for specialists and graduate students working in the field of electric power engineering and high-voltage electrical technologies.

Information about authors

Андрей [Andrey] Анатольевич [A.] Белогловский [Beloglovsky]

Ph.D. (Techn.), Assistant Professor of High Voltage Engineering and Electrical Physics Dept., NRU MPEI, e-mail: BeloglovskyAA@mpei.ru

Сергей [Sergey] Вячеславович [V.] Белоусов [Belousov]

Ph.D. (Techn.), Assistant Professor of High Voltage Engineering and Electrical Physics Dept., NRU MPEI

Ангелина [Angelina] Владимировна [V.] Галимова [Galimova]

Ph.D.-student of High Voltage Engineering and Electrical Physics Dept., NRU MPEI

References

1. Бортник И.М. и др. Электрофизические основы техники высоких напряжений. М: Изд-во МЭИ, 2016.
2. Понизовский А.З., Жуликов С.С., Голубев Д.В. Исследование очистки воздуха от примесей оксида азота с помощью низкотемпературной плазмы, генерируемой стримерным наносекундным коронным разрядом. М.: Изд-во МЭИ, 2021.
3. Филимонова Е.А. Кинетика процессов горения, конверсии оксидов азота и углеводородов, стимулированных наносекундными разрядами: дисс. … учён. степени доктора физ.-мат. наук. М.: ИВТАН, 2021.
4. Huiskamp T. Nanosecond Pulsed Streamer Discharges. Pt. I. Generation, Source-plasma Interaction and Energy-efficiency Optimization // Plasma Sources Sci. Technol. 2020. V. 29. P. 023002.
5. Гундарева С.В., Калугина И.Е., Темников А.Г. Об особенностях методики расчёта поражаемости наземных взрывоопасных объектов молнией // Журнал технической физики. 2016. Т. 86. № 8. С. 156—158.
6. Калугина И.Е., Темников А.Г., Гундарева С.В. Методы исследования поражаемости наземных объектов молнией. М.: Изд-во МЭИ, 2017.
7. Райзер Ю.П. Физика газового разряда. Долгопрудный: Издат. дом «Интеллект», 2009.
8. Briels T.M.P. e. a. Positive and Negative Streamers in Ambient Air: Measuring Diameter, Velocity and Dissipated Energy // J. Phys. D: Appl. Phys. 2008. V. 41. P. 234004.
9. Nijdam S., Geurts C.G.C., van Veldhuizen E.M., Ebert U. Reconnection and Merging of Positive Streamers in Air // J. Phys. D: Appl. Phys. 2009. V. 42. P. 045201.
10. Куликовский А.А. Математическое моделирование стримерного пробоя газов и вычислительный эксперимент в полях различных конфигураций: автореф. дисс. … учён. степ. доктора физ.-мат. наук. М.: Изд-во МГУ, 1998.
11. Papageorgiou L., Georghiou G.E., Metaxas A.C. Three-dimensional Numerical Modeling of Gas Discharges at Atmospheric Pressure Incorporating Photoionization Phenomena // J. Phys. D: Appl. Phys. 2011. V. 44. P. 045203.
12. Белогловский А.А., Верещагин И.П. Трёхмерное математическое моделирование стримерного разряда в воздухе с учётом ветвления: экономичный расчёт электрического поля // Электричество. 2011. № 11. С. 17—24.
13. Luque A., Ebert U. Density Models for Streamer Discharges: Beyond Cylindrical Symmetry and Homogeneous Media // J. Computational Phys. 2012. V. 231. Pp. 904—918.
14. Верещагин И.П., Белогловский А.А., Колобайцев М.А., Мирзабекян Г.З. Влияние фотоионизации на распространение катодонаправленных стримеров в воздухе // Вестник МЭИ. 2012. № 2. С. 67—72.
15. Zhu Yu., Zhang X., He J. Predicting Streamer Discharge front Splitting by Ionization Seed Profiling // Phys. Plasmas. 2019. V. 26. P. 023513.
16. Bagheri B., Teunissen J. The Effect of the Stochasticity of Photoionization on 3D-streamer Simulations // Plasma Sources Sci. Technol. 2019. V. 28. P. 045013.
17. Белогловский А.А. Оценка влияния формы лавинно-стримерного перехода на распространение катодонаправленного стримера в воздухе // Вестник МЭИ. 2016. № 3. С. 29—34.
18. Юргеленас Ю.В. Алгоритм расчёта динамики заряженных частиц в диффузионно-дрейфовой модели стримера // Физико-технические проблемы передачи электрической энергии. М.: Изд-во МЭИ, 1998. С. 121—160.
19. Калиткин Н.Н. Численные методы. СПб.: БХВ-Петербург, 2014.
---
Для цитирования: Белогловский А.А., Белоусов С.В., Галимова А.В. Исследование в вычислительных экспериментах особенностей формирования и развития стримеров в воздухе // Вестник МЭИ. 2022. № 6. С. 61—67. DOI: 10.24160/1993-6982-2022-6-61-67
#
1. Bortnik I.M. i dr. Elektrofizicheskie Osnovy Tekhniki Vysokikh Napryazheniy. M: Izd-vo MEI, 2016. (in Russian).
2. Ponizovskiy A.Z., Zhulikov S.S., Golubev D.V. Issledovanie Ochistki Vozdukha ot Primesey Oksida Azota s Pomoshch'yu Nizkotemperaturnoy Plazmy, Generiruemoy Strimernym Nanosekundnym Koronnym Razryadom. M.: Izd-vo MEI, 2021. (in Russian).
3. Filimonova E.A. Kinetika Protsessov Goreniya, Konversii Oksidov Azota i Uglevodorodov, Stimulirovannykh Nanosekundnymi Razryadami: Diss. … Uchen. Stepeni Doktora Fiz.-mat. Nauk. M.: IVTAN, 2021. (in Russian).
4. Huiskamp T. Nanosecond Pulsed Streamer Discharges. Pt. I. Generation, Source-plasma Interaction and Energy-efficiency Optimization. Plasma Sources Sci. Technol. 2020;29:023002.
5. Gundareva S.V., Kalugina I.E., Temnikov A.G. Ob Osobennostyakh Metodiki Rascheta Porazhaemosti Nazemnykh Vzryvoopasnykh Obektov Molniey. Zhurnal Tekhnicheskoy Fiziki. 2016;86;8:156—158. (in Russian).
6. Kalugina I.E., Temnikov A.G., Gundareva S.V. Metody Issledovaniya Porazhaemosti Nazemnykh Obektov Molniey. M.: Izd-vo MEI, 2017. (in Russian).
7. Rayzer Yu.P. Fizika Gazovogo Razryada. Dolgoprudnyy: Izdat. Dom «Intellekt», 2009. (in Russian).
8. Briels T.M.P. e. a. Positive and Negative Streamers in Ambient Air: Measuring Diameter, Velocity and Dissipated Energy. J. Phys. D: Appl. Phys. 2008;41:234004.
9. Nijdam S., Geurts C.G.C., van Veldhuizen E.M., Ebert U. Reconnection and Merging of Positive Streamers in Air. J. Phys. D: Appl. Phys. 2009;42:045201.
10. Kulikovskiy A.A. Matematicheskoe Modelirovanie Strimernogo Proboya Gazov i Vychislitel'nyy Eksperiment v Polyakh Razlichnykh Konfiguratsiy: Avtoref. Diss. … Uchen. Step. Doktora Fiz.-mat. Nauk. M.: Izd-vo MGU, 1998. (in Russian).
11. Papageorgiou L., Georghiou G.E., Metaxas A.C. Three-dimensional Numerical Modeling of Gas Discharges at Atmospheric Pressure Incorporating Photoionization Phenomena. J. Phys. D: Appl. Phys. 2011;44:045203.
12. Beloglovskiy A.A., Vereshchagin I.P. Trekhmernoe Matematicheskoe Modelirovanie Strimernogo Razryada v Vozdukhe s Uchetom Vetvleniya: Ekonomichnyy Raschet Elektricheskogo Polya. Elektrichestvo. 2011;11:17—24. (in Russian).
13. Luque A., Ebert U. Density Models for Streamer Discharges: Beyond Cylindrical Symmetry and Homogeneous Media. J. Computational Phys. 2012;231:904—918.
14. Vereshchagin I.P., Beloglovskiy A.A., Kolobaytsev M.A., Mirzabekyan G.Z. Vliyanie Fotoionizatsii na Rasprostranenie Katodonapravlennykh Strimerov v Vozdukhe. Vestnik MEI. 2012;2:67—72. (in Russian).
15. Zhu Yu., Zhang X., He J. Predicting Streamer Discharge front Splitting by Ionization Seed Profiling. Phys. Plasmas. 2019;26:023513.
16. Bagheri B., Teunissen J. The Effect of the Stochasticity of Photoionization on 3D-streamer Simulations. Plasma Sources Sci. Technol. 2019;28:045013.
17. Beloglovskiy A.A. Otsenka Vliyaniya Formy Lavinno-strimernogo Perekhoda na Rasprostranenie Katodonapravlennogo Strimera v Vozdukhe. Vestnik MEI. 2016;3:29—34. (in Russian).
18. Yurgelenas Yu.V. Algoritm Rascheta Dinamiki Zaryazhennykh Chastits v Diffuzionno-dreyfovoy Modeli Strimera. Fiziko-tekhnicheskie problemy Peredachi Elektricheskoy Energii. M.: Izd-vo MEI, 1998:121—160. (in Russian).
19. Kalitkin N.N. Chislennye Metody. SPb.: BKHV-Peterburg, 2014. (in Russian).
---
For citation: Beloglovsky A.A., Belousov S.V., Galimova A.V. Studying the Features of Streamer Formation and Development in Air by Using Computation Experiments. Bulletin of MPEI. 2022;6:61—67. (in Russian). DOI: 10.24160/1993-6982-2022-6-61-67
Published
2022-04-18
Section
Electric Power Industry (Technical Sciences) (2.4.3)