The Use of Coke Ash Residue as Power Generating Fuel at Thermal Power Facilities

  • Андрей [Andrey] Владимирович [V.] Жуйков [Zhuikov]
Keywords: coke-ash residue, coal, combustion, thermogravimetric analysis, power generating fuel, resource saving

Abstract

The aim of the study is to preliminarily estimate the possibility of using coke-ash residue as power generating fuel. Coke-ash residue is obtained in the process of gasifying the Balakhta brown coal from the Kansk–Achinsk coal basin in the technological process of obtaining producer gas used as fuel for boilers. To achieve the formulated aim, a technical and elemental analysis of the fuel was carried out. Using the thermogravimetric method at three different heating rates in air flow, the temperature intervals of the main stages included in the combustion process are established, and typical combustion characteristics are determined. By applying the scanning electron microscopy method, a qualitative analysis of the fuel particle surfaces for the presence of pores, cracks, and channels was carried out. Using the curve crossing method, the coke residue ignition and burnout temperatures were determined. The average ignition and burnout and burnout temperatures were found to be 466°C and 685°C, respectively. Based on the mass loss curve profiles, the percentage reduction in the fuel mass at all stages of the combustion process was determined. Proceeding from the mass variation rate curve profiles, the maximum reaction rate was established for all heating rates. By using differential scanning calorimetry, the endothermic and exothermic effects at different heating rates were established, and the maximum heat flux intensity was determined. The obtained results are recommended to be used in designing the generating devices and systems at thermal power facilities. Coke-ash residue with a calorific value of 15.1 MJ/kg and a volatile matter content of 11.8% can be used as a smokeless power generating fuel.

Information about author

Андрей [Andrey] Владимирович [V.] Жуйков [Zhuikov]

Ph.D. (Techn.), Head of the Educational and Scientific Laboratory of the Thermal Engineering and Hydrogas Dynamics Dept., Polytechnic Institute of the Siberian Federal University, e-mail: azhuikov@sfu-kras.ru

References

1. Жуйков А.В., Матюшенко А.И., Панфилов В.И., Настевич О.Е. Опыт применения искусственного газа на промышленно-отопительной котельной в качестве основного топлива // Электрические станции. 2020. № 11. С. 9—13.
2. Исламов С.Р. Термическая переработка как новый уровень обогащения угля // Уголь. 2020. № 5. С. 50–55.
3. Логинов Д.А., Черных А.П., Исламов С.Р. Экспериментальное исследование влияние давления на процесс полукоксования бурого угля // Химия твердого топлива. 2021. № 2. С. 67—70.
4. Cao Y., Liu Y., Li Z., Zong P., Hou J., Zhang Q., Gou X. Synergistic Effect, Kinetics, and Pollutant Emission Characteristics of Сo-combustion of Polymer-containing Oily Sludge and Cornstalk Using TGA and Fixed-bed Reactor // Renewable Energy. 2022. V. 185. Pp. 748—758.
5. Rago Y.P., Collard F.-X., Görgens J.F., Surroop D., Mohee R. Co-combustion of Torrefied Biomass-plastic Waste Blends with Coal Through TGA: Influence of Synergistic Behavior // Energy. 2022. V. 239. P. 121859.
6. Богомолов А.Р., Петров И.Я., Жалмагамбетова У.К. Термический анализ углей казахстанских месторождений // Теплоэнергетика. 2020. № 3. С. 24—32.
7. Laougé Z.B., Merdun H. Investigation of Thermal Behavior of Pine Sawdust and Coal During Co-pyrolysis and Co-combustion // Energy. 2021. V. 231. P. 120895.
8. Deng S., Tan H., Wei B., Wang X., Yang F., Xiong X. Investigation on Combustion Performance and Ash Fusion Characteristics of Zhundong Coal Co-combustion with Coal Gangue // Fuel. 2021. V. 294. P. 120555.
9. Atimtay A., Yurdakul S. Combustion and Co-Combustion Characteristics of Torrefied Poultry Litter with Lignite // Renewable Energy. 2020. V. 148. Pp. 1292—1301.
10. Cong K., Han F., Zhang Y., Li Q. The Investigation of Co-combustion Characteristics of Tobacco Stalk and Low Rank Coal Using a Macro-TGA // Fuel. 2019. V. 237. Pp. 126—132.
11. Glushkov D.O., Matiushenko A.I., Nurpeiis A.E., Zhuikov A.V. An Experimental Investigation Into the Fuel Oil-free Start-up of a Coal-fired Boiler by the Main Solid Fossil Fuel with Additives of Brown Coal, Biomass and Charcoal for Ignition Enhancement // Fuel Process. Technol. 2021. V. 223. P. 106986.
12. Oladejo J.M., Adegbite S., Pang C.H., Liu H., Parvez A.M., Wu T. A Novel Index for the Study of Synergistic Effects During the Co-processing of Coal and Biomass // Appl. Energy. 2017. V. 188. Pp. 215—225.
13. Moon C., Sung Y., Ahn S., Kim T., Choi G., Kim D. Effect of Blending Ratio on Combustion Performance in Blends of Biomass and Coals of Different Ranks // Exp. Therm. Fluid Sci. 2013. V. 47. Pp. 232—240.
14. Seggiani M., Vitolo S., Pastorelli M., Ghetti P. Combustion Reactivity of Different Oil-fired Fly Ashes as Received and Leached // Fuel. 2007. V. 86. Pp. 1885—1891.
15. Liu H., Gong S., Jia C., Wang Q. TG-FTIR Analysis of Co-combustion Characteristics of Oil Shale Semi-coke and Corn straw // J. Therm. Anal. Calorim. 2017. V. 127. Pp. 2531—2544.
16. Liu Z., Quek A., Kent Hoekman S., Srinivasan M.P., Balasubramanian R. Thermogravimetric Investigation of Hydrochar-lignite Co-combustion // Bioresour. Technol. 2012. V. 123. Pp. 646—652.
17. Ding G., He B., Yao H., Cao Y., Su L., Duan Z. Co-combustion Behaviors of Municipal Solid Waste and Low-rank Coal Semi-coke in Air or Oxygen/carbon Dioxide Atmospheres // J. Therm. Anal. Calorim. 2021. V. 143. Pp. 619—635.
18. Wang C., Wang F., Yang Q., Liang R. Thermogravimetric Studies of the Behavior of Wheat Straw with Added Coal During Combustion // Biomass Bioenergy. 2009. V. 33. Pp. 50—56.
19. Li X.G., Ma B.G., Xu L., Hu Z-W., Wang X-G. Thermogravimetric Analysis of the Co-combustion of the Blends with High Ash Coal and Waste Tyres // Thermochim. Acta. 2006. V. 441. Pp. 79—83.
20. Lu J-J., Chen W-H. Investigation on the Ignition and Burnout Temperatures of Bamboo and Sugarcane Bagasse by Thermogravimetric Analysis // Appl. Energy. 2015. V. 160. Pp. 49—57.
21. Niu S.L., Han K.H., Lu C.M. Characteristic of Coal Combustion in Oxygen/carbon Dioxide Atmosphere and Nitric Oxide Release During This Process // Energy Conversion Management. 2011. V. 52. Pp. 532—537.
22. Bala-Litwiniak A., Zajemska M. Computational and Experimental Study of Pine and Sunflower Husk Pellet Combustion and Co-combustion with Oats in Domestic Boiler // Renew. Energy. 2020. V. 162. Pp. 151—159.
23. Жуйков А.В. и др. Использование смесевого топлива на основе бурого угля и продуктов его термической переработки в топках энергетических котлов // Журнал Сибирского федерального университета. Серия «Техника и технологии». 2021. Т. 14. № 1. С. 106—116.
24. Zhuikov A.V., Zemlyanskiy N.A., Chicherin S.V., Junussova L.R., Yelemanova A.A., Grishina I.I. The research of Combustion of Solid Fuel Mixture Based on Low Degree Coals of Metamorphism of the Kansko-Achinsky Coal Basin // J. Phys. Conf. Ser. 2022. V. 2211(1). P. 012001.
---
Для цитирования: Жуйков А.В. Применение коксозольного остатка в качестве энергетического топлива на объектах теплоэнергети-ки // Вестник МЭИ. 2022. № 6. С. 104—109. DOI: 10.24160/1993-6982-2022-6-104-109
---
Работа выполнена при поддержке: Красноярского краевого фонда науки в рамках проекта «Концепция развития теплоэнергетики Красноярского края»
#
1. Zhuykov A.V., Matyushenko A.I., Panfilov V.I., Nastevich O.E. Opyt Primeneniya Iskusstvennogo Gaza na Promyshlenno-otopitel'noy Kotel'noy v Kachestve Osnovnogo Topliva. Elektricheskie stantsii. 2020;11:9—13. (in Russian).
2. Islamov S.R. Termicheskaya Pererabotka kak Novyy Uroven' Obogashcheniya Uglya. Ugol'. 2020;5:50–55. (in Russian).
3. Loginov D.A., Chernykh A.P., Islamov S.R. Eksperimental'noe Issledovanie Vliyanie Davleniya na Protsess Polukoksovaniya Burogo Uglya. Khimiya Tverdogo Topliva. 2021;2:67—70. (in Russian).
4. Cao Y., Liu Y., Li Z., Zong P., Hou J., Zhang Q., Gou X. Synergistic Effect, Kinetics, and Pollutant Emission Characteristics of So-combustion of Polymer-containing Oily Sludge and Cornstalk Using TGA and Fixed-bed Reactor. Renewable Energy. 2022;185:748—758.
5. Rago Y.P., Collard F.-X., Görgens J.F., Surroop D., Mohee R. Co-combustion of Torrefied Biomass-plastic Waste Blends with Coal Through TGA: Influence of Synergistic Behavior. Energy. 2022;239:121859.
6. Bogomolov A.R., Petrov I.Ya., Zhalmagambetova U.K. Termicheskiy Analiz Ugley Kazakhstanskikh Mestorozhdeniy. Teploenergetika. 2020;3:24—32. (in Russian).
7. Laougé Z.B., Merdun H. Investigation of Thermal Behavior of Pine Sawdust and Coal During Co-pyrolysis and Co-combustion. Energy. 2021;231:120895.
8. Deng S., Tan H., Wei B., Wang X., Yang F., Xiong X. Investigation on Combustion Performance and Ash Fusion Characteristics of Zhundong Coal Co-combustion with Coal Gangue. Fuel. 2021;294:120555.
9. Atimtay A., Yurdakul S. Combustion and Co-Combustion Characteristics of Torrefied Poultry Litter with Lignite. Renewable Energy. 2020;148:1292—1301.
10. Cong K., Han F., Zhang Y., Li Q. The Investigation of Co-combustion Characteristics of Tobacco Stalk and Low Rank Coal Using a Macro-TGA. Fuel. 2019;237:126—132.
11. Glushkov D.O., Matiushenko A.I., Nurpeiis A.E., Zhuikov A.V. An Experimental Investigation Into the Fuel Oil-free Start-up of a Coal-fired Boiler by the Main Solid Fossil Fuel with Additives of Brown Coal, Biomass and Charcoal for Ignition Enhancement. Fuel Process. Technol. 2021;223:106986.
12. Oladejo J.M., Adegbite S., Pang C.H., Liu H., Parvez A.M., Wu T. A Novel Index for the Study of Synergistic Effects During the Co-processing of Coal and Biomass. Appl. Energy. 2017;188:215—225.
13. Moon C., Sung Y., Ahn S., Kim T., Choi G., Kim D. Effect of Blending Ratio on Combustion Performance in Blends of Biomass and Coals of Different Ranks. Exp. Therm. Fluid Sci. 2013;47:232—240.
14. Seggiani M., Vitolo S., Pastorelli M., Ghetti P. Combustion Reactivity of Different Oil-fired Fly Ashes as Received and Leached. Fuel. 2007;86:1885—1891.
15. Liu H., Gong S., Jia C., Wang Q. TG-FTIR Analysis of Co-combustion Characteristics of Oil Shale Semi-coke and Corn straw. J. Therm. Anal. Calorim. 2017;127:2531—2544.
16. Liu Z., Quek A., Kent Hoekman S., Srinivasan M.P., Balasubramanian R. Thermogravimetric Investigation of Hydrochar-lignite Co-combustion. Bioresour. Technol. 2012;123:646—652.
17. Ding G., He B., Yao H., Cao Y., Su L., Duan Z. Co-combustion Behaviors of Municipal Solid Waste and Low-rank Coal Semi-coke in Air or Oxygen/carbon Dioxide Atmospheres. J. Therm. Anal. Calorim. 2021;143:619—635.
18. Wang C., Wang F., Yang Q., Liang R. Thermogravimetric Studies of the Behavior of Wheat Straw with Added Coal During Combustion. Biomass Bioenergy. 2009;33:50—56.
19. Li X.G., Ma B.G., Xu L., Hu Z-W., Wang X-G. Thermogravimetric Analysis of the Co-combustion of the Blends with High Ash Coal and Waste Tyres. Thermochim. Acta. 2006;441:79—83.
20. Lu J-J., Chen W-H. Investigation on the Ignition and Burnout Temperatures of Bamboo and Sugarcane Bagasse by Thermogravimetric Analysis. Appl. Energy. 2015;160:49—57.
21. Niu S.L., Han K.H., Lu C.M. Characteristic of Coal Combustion in Oxygen/carbon Dioxide Atmosphere and Nitric Oxide Release During This Process. Energy Conversion Management. 2011;52:532—537.
22. Bala-Litwiniak A., Zajemska M. Computational and Experimental Study of Pine and Sunflower Husk Pellet Combustion and Co-combustion with Oats in Domestic Boiler. Renew. Energy. 2020;162:151—159.
23. Zhuykov A.V. i dr. Ispol'zovanie Smesevogo Topliva na Osnove Burogo Uglya i Produktov Ego Termicheskoy Pererabotki v Topkakh Energeticheskikh Kotlov. Zhurnal Sibirskogo Federal'nogo Universiteta. Seriya «Tekhnika i Tekhnologii». 2021;14;1:106—116. (in Russian).
24. Zhuikov A.V., Zemlyanskiy N.A., Chicherin S.V., Junussova L.R., Yelemanova A.A., Grishina I.I. The research of Combustion of Solid Fuel Mixture Based on Low Degree Coals of Metamorphism of the Kansko-Achinsky Coal Basin. J. Phys. Conf. Ser. 2022;2211(1):012001.
---
For citation: Zhuikov A.V. The Use of Coke Ash Residue as Power Generating Fuel at Thermal Power Facilities. Bulletin of MPEI. 2022;6:104—109. (in Russian). DOI: 10.24160/1993-6982-2022-6-104-109
---
The work is executed at support: Krasnoyarsk Regional Science Foundation within the Framework of the Project «The Concept of Development of Thermal Power Engineering of the Krasnoyarsk Territory»
Published
2022-05-05
Section
Theoretical and Applied Heat Engineering (Technical Sciences) (2.4.6)