An Experimental Study of the Effect a Ground-Source Heat Pump with a Soil Temperature Potential Recovery System Has on the Soil Thermal Imbalance under Cold Climate Conditions

  • Артем [Artem] Вячеславович [V.] Рыженков [Ryzhenkov]
  • Иван [Ivan] Сергеевич [S.] Соколов [Sokolov]
  • Алена [Alena] Юрьевна [Yu.] Лихаева [Likhaeva]
  • Елизавета [Elizaveta] Михайловна [M.] Алешкова [Aleshkova]
Keywords: soil freezing, thermal load imbalance, ground temperature recovery, heat pumps, renewable energy sources

Abstract

Ground thermal balance disturbance is a serious problem that arises during the operation of heat pumps with a geothermal circuit. In regions with cold climate and high space heating loads, ground freezing leads to a significantly degraded performance of heat pumps during their long-term operation.

Experimental studies to estimate the effect the ground temperature potential recovery system operation has on the ground thermal imbalance under the climatic conditions of the city of Moscow were conducted. The system considered includes three fan coils, which operate for air conditioning of building rooms. The excess heat extracted from air is transferred through a storage tank to the geothermal circuit wells. The system has shown its good performance, because with a longer time of heat pump operation with commensurable load, an insignificant decrease in the average ground temperature and in the heat carrier temperature at the heat pump evaporator inlet were noted. The use of such systems will help increase the effective service life of heat pumps with a geothermal circuit and expand their possible application field to colder regions with a strongly pronounced imbalance of thermal loads.

Information about authors

Артем [Artem] Вячеславович [V.] Рыженков [Ryzhenkov]

Dr.Sci. (Techn.), Director, Scientific Center «Wear Resistance», NRU MPEI, e-mail: ryzhenkovav@mpei.ru

Иван [Ivan] Сергеевич [S.] Соколов [Sokolov]

Ph.D.-student of Industrial Heat Power Engineering Systems Dept., NRU MPEI, e-mail: sokolovivs@mpei.ru 

Алена [Alena] Юрьевна [Yu.] Лихаева [Likhaeva]

Ph.D.-student of Industrial Heat Power Engineering Systems Dept., Engineer of the 1st Category
of Scientific Center «Wear Resistance», NRU MPEI, e-mail: likhayevaay@mpei.ru

Елизавета [Elizaveta] Михайловна [M.] Алешкова [Aleshkova]

Ph.D.-student of Industrial Heat Power Engineering Systems Dept., NRU MPEI, e-mail: tiabutym@mpei.ru

References

1. Key World Energy Statistics. Paris: IEA, 2021.
2. Приказ Минэнерго России № 45 от 28.01.2019 г. «Об утверждении плана деятельности министерства энергетики Российской Федерации на период 2019 — 2024 годов».
3. Chen S. e. a. Long-term Thermal Imbalance in Large Borehole Heat Exchangers Array — a Numerical Study Based on the Leicester Project // Energy and Buildings. 2021. V. 231. P. 110518.
4. Ahmadfard M., Bernier M. A Review of Vertical Ground Heat Exchanger Sizing Tools Including an Inter-model Comparison // Renewable and Sustainable Energy Rev. 2019. V. 110. Pp. 247—265.
5. Yang W., Xu R., Yang B., Yang J. Experimental and Numerical Investigations on the Thermal Performance of a Borehole Ground Heat Exchanger with PCM Backfill // Energy. 2019. V. 174. Pp. 216—235.
6. Chen F., Mao J., Li C., Hou P., Li Y., Xing Z., Chen S. Restoration Performance and Operation Characteristics of a Vertical U-tube Ground Source Heat Pump System with Phase Change Grouts Under Different Running Modes // Appl. Thermal Eng. 2018. V. 141. Pp. 467—482.
7. Hou G., Taherian H., Li L. A predictive TRNSYS model for Long-term Operation of a Hybrid Ground Source Heat Pump System with Innovative Horizontal Buried Pipe Type // Renewable Energy. 2020. V. 151. Pp. 1046—1054.
8. Wang P., Gao W., Bai L., Qi Z. Research on Operating Performance of Ground Source Heat Pump System in Severe Cold Region // Fresenius Environmental Bulletin. 2020. V. 29. Pp. 8373—8377.
9. Han J., Tian Z., Qu Y., Chen Y. Cooling and Heating System of Buried Pipe Ground Source Heat Pump Combined Electric Refrigeration Units and Municipal Heat Source // Proc. Seminar on Construction and Efficient Operation of Heating Eng. Suzhou, 2019. Pp. 218—222.
10. Nouri G., Noorollahi Y., Yousefi H. Designing and Optimization of Solar Assisted Ground Source Heat Pump System to Supply Heating, Cooling and Hot Water Demands // Geothermics. 2019. V. 82. Pp. 212—231.
11. Pu L., Xu L., Qi D., Li Y. A Novel Tree-shaped Ground Heat Exchanger for GSHPs in Severely Cold Regions // Appl. Thermal Eng. 2019. V. 146. Pp. 278—287.
12. Naili N., Kooli S. Solar-assisted Ground Source Heat Pump System Operated in Heating Mode: a Case Study in Tunisia // Renewable and Sustainable Energy Rev. 2021. V. 145. P. 111144.
13. Hu Z., Geng S., Huang Y., Ge F., Wang Y. Heat Storage Characteristics and Application Analysis of Heat Source Tower in Soil Thermal Balance of Ground Source Heat Pump // Energy and Buildings. 2021. V. 235. P. 110752.
14. Liu G. e. a. Study on Heat Transfer Model of Capillary Exchanger in Subway Source Heat Pump System // Renewable Energy. 2020. V. 150. Pp. 1074—1088.
15. Tong Z., Cao T., Zang G., Hu S., Liu G., Wang Y. Performance Analysis of Capillary Front-end Heat Exchanger for Subway Tunnel // Appl. Thermal Eng. 2020. V. 174. P. 115360.
16. Fine J.P., Nguyen H.V., Friedman J., Leong W.H., Dworkin S.B. A Simplified Ground Thermal Response Model for Analyzing Solar-assisted Ground Source Heat Pump Systems // Energy Conversion and Management. 2018. V. 165. Pp. 276—290.
17. Han J., Cui M., Chen J., Lv W. Analysis of Thermal Performance and Economy of Ground Source Heat Pump System: a Case Study of the Large Building // Geothermics. 2021. V. 89. P. 101929.
18. Kumar S., Murugesan K. Optimization of Geothermal Interaction of a Double U-tube Borehole Heat Exchanger for Space Heating and Cooling Applications Using Taguchi Method and Utility Concept // Geothermics. 2020. V. 83. P. 101723.
19. Ma Z., Xia L., Gong X., Kokogiannakis G., Wang S., Zhou X. Recent Advances and Development in Optimal Design and Control of Ground Source Heat Pump Systems // Renewable and Sustainable Energy Rev. 2020. V. 131. P. 110001.
20. Wang E., Zhang F., Zhang Y., Zhao Q. Influence Investigation of Thermal Load Imbalance on Geothermal Heat Exchanger // Proc. Eng. 2017. V. 205. Pp. 3846—3851.
---
Для цитирования: Рыженков А.В., Соколов И.С., Лихаева А.Ю., Алешкова Е.М. Экспериментальное исследование влияния грунтового теплового насоса с системой восстановления температурного потенциала грунта на тепловой дисбаланс грунта в условиях холодного климата // Вестник МЭИ. 2022. № 6. С. 117—125. DOI: 10.24160/1993-6982-2022-6-117-125
---
Работа выполнена: в рамках проекта «Повышение эффективности комбинированного источника теплохладоснабжения здания на основе использования возобновляемых источников энергии» при поддержке гранта НИУ «МЭИ» на реализацию программ научных исследований «Энергетика», «Электроника, радиотехника и IT» и «Технологии индустрии 4.0 для промышленности и робототехника» в 2020—2022 гг.
#
1. Key World Energy Statistics. Paris: IEA, 2021.
2. Prikaz Minenergo Rossii № 45 ot 28.01.2019 g. «Ob Utverzhdenii Plana Deyatel'nosti Ministerstva Energetiki Rossiyskoy Federatsii na Period 2019 — 2024 Godov». (in Russian).
3. Chen S. e. a. Long-term Thermal Imbalance in Large Borehole Heat Exchangers Array — a Numerical Study Based on the Leicester Project. Energy and Buildings. 2021;231:110518.
4. Ahmadfard M., Bernier M. A Review of Vertical Ground Heat Exchanger Sizing Tools Including an Inter-model Comparison. Renewable and Sustainable Energy Rev. 2019;110:247—265.
5. Yang W., Xu R., Yang B., Yang J. Experimental and Numerical Investigations on the Thermal Performance of a Borehole Ground Heat Exchanger with PCM Backfill. Energy. 2019;174:216—235.
6. Chen F., Mao J., Li C., Hou P., Li Y., Xing Z., Chen S. Restoration Performance and Operation Characteristics of a Vertical U-tube Ground Source Heat Pump System with Phase Change Grouts Under Different Running Modes. Appl. Thermal Eng. 2018;141:467—482.
7. Hou G., Taherian H., Li L. A predictive TRNSYS model for Long-term Operation of a Hybrid Ground Source Heat Pump System with Innovative Horizontal Buried Pipe Type. Renewable Energy. 2020;151:1046—1054.
8. Wang P., Gao W., Bai L., Qi Z. Research on Operating Performance of Ground Source Heat Pump System in Severe Cold Region. Fresenius Environmental Bulletin. 2020;29:8373—8377.
9. Han J., Tian Z., Qu Y., Chen Y. Cooling and Heating System of Buried Pipe Ground Source Heat Pump Combined Electric Refrigeration Units and Municipal Heat Source. Proc. Seminar on Construction and Efficient Operation of Heating Eng. Suzhou, 2019:218—222.
10. Nouri G., Noorollahi Y., Yousefi H. Designing and Optimization of Solar Assisted Ground Source Heat Pump System to Supply Heating, Cooling and Hot Water Demands. Geothermics. 2019;82:212—231.
11. Pu L., Xu L., Qi D., Li Y. A Novel Tree-shaped Ground Heat Exchanger for GSHPs in Severely Cold Regions. Appl. Thermal Eng. 2019;146:278—287.
12. Naili N., Kooli S. Solar-assisted Ground Source Heat Pump System Operated in Heating Mode: a Case Study in Tunisia. Renewable and Sustainable Energy Rev. 2021;145:111144.
13. Hu Z., Geng S., Huang Y., Ge F., Wang Y. Heat Storage Characteristics and Application Analysis of Heat Source Tower in Soil Thermal Balance of Ground Source Heat Pump. Energy and Buildings. 2021;235:110752.
14. Liu G. e. a. Study on Heat Transfer Model of Capillary Exchanger in Subway Source Heat Pump System. Renewable Energy. 2020;150:1074—1088.
15. Tong Z., Cao T., Zang G., Hu S., Liu G., Wang Y. Performance Analysis of Capillary Front-end Heat Exchanger for Subway Tunnel. Appl. Thermal Eng. 2020;174:115360.
16. Fine J.P., Nguyen H.V., Friedman J., Leong W.H., Dworkin S.B. A Simplified Ground Thermal Response Model for Analyzing Solar-assisted Ground Source Heat Pump Systems. Energy Conversion and Management. 2018;165:276—290.
17. Han J., Cui M., Chen J., Lv W. Analysis of Thermal Performance and Economy of Ground Source Heat Pump System: a Case Study of the Large Building. Geothermics. 2021;89:101929.
18. Kumar S., Murugesan K. Optimization of Geothermal Interaction of a Double U-tube Borehole Heat Exchanger for Space Heating and Cooling Applications Using Taguchi Method and Utility Concept. Geothermics. 2020;83:101723.
19. Ma Z., Xia L., Gong X., Kokogiannakis G., Wang S., Zhou X. Recent Advances and Development in Optimal Design and Control of Ground Source Heat Pump Systems. Renewable and Sustainable Energy Rev. 2020;131:110001.
20. Wang E., Zhang F., Zhang Y., Zhao Q. Influence Investigation of Thermal Load Imbalance on Geothermal Heat Exchanger. Proc. Eng. 2017;205:3846—3851.
---
For citation: Ryzhenkov A.V., Sokolov I.S., Likhaeva A.Yu., Aleshkova E.M. An Experimental Study of the Effect a Ground-Source Heat Pump with a Soil Temperature Potential Recovery System Has on the Soil Thermal Imbalance under Cold Climate Conditions. Bulletin of MPEI. 2022;6:117—125. (in Russian). DOI: 10.24160/1993-6982-2022-6-117-125
---
The work is executed: Within the Framework of the Project «Improving the Efficiency of the Combined Heat and Cooling Supply of the Building Based on the Use of Renewable Energy Sources» with the Support of a Grant from the National Research University «MPEI» for the Implementation of Research Programs «Energy», «Electronics, Radio Engineering and IT» and «Industry 4.0 Technologies for Industry and Robotics» in 2020—2022.
Published
2022-05-04
Section
Theoretical and Applied Heat Engineering (Technical Sciences) (2.4.6)