Using the Monte-Carlo Method with Subsequent Approximation in Statistical-Mechanical Modeling for Estimating the Reliability of NPP Pipelines and Pressure Vessels

  • Антон [Anton] Николаевич [N.] Терехин [Terekhin]
  • Евгений [Evgeniy] Александрович [A.] Шиверский [Shiverskiy]
Keywords: leak, ductile-brittle failure, statistical-mechanical modeling, Monte-Carlo method, approximation

Abstract

For a large number of safety-critical components at existing and newly designed NPPs, the task of confirming their reliability by conventional statistical methods does not seem to be possible in view of both short periods of time for which these components have been in operation and almost no failures that have occurred for this period of time, as well as lack of analogs from the worldwide practices. One of approaches to assessing the failure probabilities of highly reliable reactor plant equipment involves application of the statistical-mechanical modeling method.

For solving statistical-mechanical models, the Monte Carlo (MC) method, which has a number of advantages over analytical ones, is commonly used. However, the need to perform an excessively large number of statistical simulations in substantiating low event probabilities prompts specialists to search for alternative calculation methods. One of these techniques, proposed in this article, is a two-stage method that combines the Monte Carlo method and approximation of statistical data – the Monte Carlo method with subsequent approximation.

Matters of reliability assessment with using statistical-mechanical modeling of components’ limit states are considered. The use of the proposed Monte Carlo method with subsequent approximation makes it possible to reduce the number of statistical simulations while preserving the accuracy of the results. This statement has been confirmed by a number of examples of calculating the probabilities of leaks and ductile-brittle fracture of reactor plant components.

Information about authors

Антон [Anton] Николаевич [N.] Терехин [Terekhin]

Leading Engineer of the Probabilistic Safety and Risk Analysis Dept., JSC «NIKIET», e-mail: a.teryokhin@nikiet.ru

Евгений [Evgeniy] Александрович [A.] Шиверский [Shiverskiy]

Ph.D. (Techn.), Chief Researcher of the Probabilistic Security and Risk Analysis Dept., JSC «NIKIET»

References

1. НП-001—15. Общие положения обеспечения безопасности атомных станций.
2. Димитриенко Ю.И., Юрин Ю.В., Шиверский Е.А. Прогнозирование долговечности и надёжности элементов конструкций высокого давления. Ч. 2. Численное статистическое моделирование // Известия высших учебных заведений. Серия «Машиностроение». 2013. № 12. С. 10—18.
3. Lemaire M. Structural Reliability. N.-Y.: ISTE Ltd and John Wiley & Sons, Inc., 2009.
4. Rastogi R., Bhasin V., Vaze K.K., Kushwaha H.S. Probabilistic Fracture Analysis of a Straight Pipe with Through-wall Circumferential Crack Using R6 Method // Nuclear Eng. and Design. 2002. V. 212. Pp. 109—114.
5. Хассани М., Буледруа О., Хадж-Мелиани М., Саду М., Плювинаж Г. Оценка трещины в трубе методом Монте-Карло при переходном режиме течения жидкости // Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. 2018. № 1. Т. 8. С. 54—61.
6. Rahman S. A Stochastic Model for Elastic-plastic Fracture Analysis of Circumferential Through-wall-cracked Pipes Subject to Bending // Eng. Fracture Mechanics. 1995. V. 52. Pp. 265—288.
7. Yang-Gang Zhao, Tetsuro Ono. A General Procedure for First/second Order Reliability Method (FORM/SORM) // Structural Safety. 1999. V. 21 Pp. 95—112.
8. Купцов М.И. Курс лекций по теории вероятностей и математической статистике. Рязань: Горизонт-РИУП, 2000.
9. Сидняев Н.И. Теория вероятностей и математическая статистика. М.: Юрайт, 2011.
10. Lee S.X., McLachlan G.J. EMMIXcskew: an R package for the Fitting of a Mixture of Canonical Fundamental Skew t-distributions // J. Statistical Software. 2018. V. 83. Pp. 1—32.
11. Wang J., Taafe M.R. Multivariate Mixtures of Normal Distriburions: Properties, Random Vector Generation, Fitting, and as Models of Market Daily Changes // INFORMS J. Computing. 2015. V. 27. Pp. 193–203.
12. ПНАЭ Г-7-002—86. Нормы расчёта на прочность оборудования и трубопроводов атомных энергетических установок.
13. Wolfram Language&System. Documentation Center. Statistical Data Analysis. [Электрон. ресурс] https://reference.wolfram.com/language/guide/Statistics.html (дата обращения 08.06.2021).
14. MSc in Big Data Analytics. Notes for Predictive Modeling. Pt. 6.1. Nonparametric Density Estimation [Электрон. ресурс] https://bookdown.org/egarpor/PM-UC3M/npreg-npdens.html (дата обращения 01.09.2021).
---
Для цитирования: Терехин А.Н., Шиверский Е.А. Использование метода Монте–Карло с последующей аппроксимацией в механико-статистическом моделировании для оценки надёжности трубопроводов и сосудов давления атомных электростанций // Вестник МЭИ. 2022. № 6. С. 128—135. DOI: 10.24160/1993-6982-2022-6-128-135
#
1. NP-001—15. Obshchie Polozheniya Obespecheniya Bezopasnosti Atomnyh Stancij. (in Russian).
2. Dimitrienko Yu.I., Yurin Yu.V., Shiverskij E.A. Prognozirovanie Dolgovechnosti i Nadyozhnosti Elementov Konstrukcij Vysokogo Davleniya. Ch. 2. Chislennoe Statisticheskoe Modelirovanie. Izvestiya Vysshih Uchebnyh Zavedenij. Seriya «Mashinostroenie». 2013;12:10—18. (in Russian).
3. Lemaire M. Structural Reliability. N.-Y.: ISTE Ltd and John Wiley & Sons, Inc., 2009.
4. Rastogi R., Bhasin V., Vaze K.K., Kushwaha H.S. Probabilistic Fracture Analysis of a Straight Pipe with Through-wall Circumferential Crack Using R6 Method. Nuclear Eng. and Design. 2002;212:109—114.
5. Hassani M., Buledrua O., Hadzh-Meliani M., Sadu M., Plyuvinazh G. Ocenka Treshchiny v Trube Metodom Monte-Karlo pri Perekhodnom Rezhime Techeniya Zhidkosti. Nauka i Tekhnologii Truboprovodnogo Transporta Nefti i Nefteproduktov. 2018;1;8:54—61. (in Russian).
6. Rahman S. A Stochastic Model for Elastic-plastic Fracture Analysis of Circumferential Through-wall-cracked Pipes Subject to Bending. Eng. Fracture Mechanics. 1995;52:265—288.
7. Yang-Gang Zhao, Tetsuro Ono. A General Procedure for First/second Order Reliability Method (FORM/SORM). Structural Safety. 1999;21:95—112.
8. Kupcov M.I. Kurs Lekcij po Teorii Veroyatnostej i Matematicheskoj Statistike. Ryazan': Gorizont-RIUP, 2000. (in Russian).
9. Sidnyaev N.I. Teoriya Veroyatnostej i Matematicheskaya Statistika. M.: Yurajt, 2011. (in Russian).
10. Lee S.X., McLachlan G.J. EMMIXcskew: an R package for the Fitting of a Mixture of Canonical Fundamental Skew t-distributions. J. Statistical Software. 2018;83:1—32.
11. Wang J., Taafe M.R. Multivariate Mixtures of Normal Distriburions: Properties, Random Vector Generation, Fitting, and as Models of Market Daily Changes. INFORMS J. Computing. 2015;27:193–203.
12. PNAE G-7-002—86. Normy Rascheta na Prochnost' Oborudovaniya i Truboprovodov Atomnyh Energeticheskih Ustanovok. (in Russian).
13. Wolfram Language&System. Documentation Center. Statistical Data Analysis. [Elektron. Resurs] https://reference.wolfram.com/language/guide/Statistics.html (Data Obrashcheniya 08.06.2021).
14. MSc in Big Data Analytics. Notes for Predictive Modeling. Pt. 6.1. Nonparametric Density Estimation [Elektron. Resurs] https://bookdown.org/egarpor/PM-UC3M/npreg-npdens.html (Data Obrashcheniya 01.09.2021).
---
For citation: Terekhin A.N. Shiverskiy, E.A. Using the Monte-Carlo Method with Subsequent Approximation in Statistical-Mechanical Modeling for Estimating the Reliability of NPP Pipelines and Pressure Vessels. Bulletin of MPEI. 2022;6:128—135. (in Russian). DOI: 10.24160/1993-6982-2022-6-128-135
Published
2022-02-14
Section
Nuclear Power Plants, Fuel Cycle, Radiation Safety (Technical Sciences) (2.4.9)