Development of Innovative Equipment that Use Solar Energy to Intensify Anaerobic Bioconversion

  • Андрей [Andrey] Александрович [A.] Ковалев [Kovalev]
  • Дмитрий [Dmitriy] Александрович [A.] Ковалев [Kovalev]
  • Владимир [Vladimir] Анатольевич [A.] Панченко [Panchenko]
Keywords: unified electric power system, hierarchical level, development perspective, unified system model, factor indicators

Abstract

The relevance of developing methods for intensifying the organic substance anaerobic bioconversion process is shown. Priority microbiological and technical methods for intensifying anaerobic bioconversion are given, and technical solutions for implementing them are described. The aim of the work is to develop a biogas plant that uses intensification means and solar energy for anaerobic processing of organic waste to produce biohydrogen, biomethane and environmentally friendly organic fertilizers. The process flow diagram of the developed plant is shown together with the general views of its elements. The developed biogas plant serves to determine the optimal modes and parameters of its elements in order to accelerate the production of biohydrogen and biomethane, as well as environmentally friendly organic fertilizers. The developed plant can also accumulate solar energy in the form of biomethane.

Information about authors

Андрей [Andrey] Александрович [A.] Ковалев [Kovalev]

Dr.Sci. (Techn.), Senior Researcher at the Federal Scientific Agroengineering Center VIM, e-mail: kovalev_ana@mail.ru

Дмитрий [Dmitriy] Александрович [A.] Ковалев [Kovalev]

Ph.D. (Techn.), Leading Researcher at the Federal Scientific Agroengineering Center VIM, e-mail: kovalev_da80@mail.ru

Владимир [Vladimir] Анатольевич [A.] Панченко [Panchenko]

Ph.D. (Techn.), Assistant Professor of  Russian University of Transport, Senior Researcher at the Federal Scientific Agroengineering Center VIM, e-mail: pancheska@mail.ru

References

1. Ножевникова А.Н., Каллистова А.Ю., Литти Ю.В., Кевбрина М.В. Биотехнология и микробиология анаэробной переработки органических бытовых отходов. M.: Университетская книга, 2016.
2. Ковалев Д., Ковалев А., Литти Ю., Ножевникова А., Катраева И. Влияние нагрузки по органическому веществу на процесс биоконверсии предварительно обработанных субстратов анаэробных биореакторов // Экология и промышленность России. 2019. № 23(12). С. 9—13.
3. Litti Yu., Kovalev D., Kovalev A., Katraeva I., Russkova J., Nozhevnikova A. Increasing the Efficiency of Organic Waste Conversion into Biogas by Mechanical Pretreatment in an Electromagnetic Mill // J. Phys. Conf. Ser. 2018. V. 1111(1). Pp.1—8.
4. Ковалев А.А., Ковалев Д.А., Григорьев В.С. Энергетическая эффективность предварительной обработки биореактора синтетического субстрата метантенка в аппарате вихревого слоя // Инженерные технологии и системы. 2020. № 30(1). С. 92—110.
5. Baek G., Kim J., Kim J., Lee C. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion // Energies. 2018. V. 11(1). Pp.107—125.
6. Nozhevnikova A.N. e. a. Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities // Microbiology. 2020. V. 89. No. 2. Pp. 129—147.
7. Storck T., Virdis B., Batstone D.J. Modelling Extracellular Limitations for Mediated Versus Direct Interspecies Electron Transfer // J. ISME. 2016. V. 10. Pp. 621—631.
8. Khan M.A. e. a. Biohydrogen Production from Anaerobic Digestion and its Potential as Renewable Energy // Renewable Energy. 2018. V. 129B. Pp. 754—768.
9. Marone A. e. a. Coupling Dark Fermentation and Microbial Electrolysis to Enhance Bio-hydrogen Production from Agro-industrial Wastewaters and By-products in a Bio-refinery Framework // Intern. J. Hydrogen Energy. 2017. V. 42(3). Pp. 1609—1621.
10. Kim S., Kumar G., Chen W., Khana S. Renewable Hydrogen Production from Biomass and Wastes (ReBioH2-2020) // Bioresource Technol. 2021. V. 331. P. 125024.
11. Sekoai P.T. e. a. Revising the Dark Fermentative H2 Research and Development Scenario — an Overview of the Recent Advances and Emerging Technological Approaches // Biomass Bioenergy. 2020. V. 140. P. 105673.
12. Elreedy A., Fujii M., Koyama M., Nakasaki K., Tawfik A. Enhanced Fermentative Hydrogen Production from Industrial Wastewater Using Mixed Culture Bacteria Incorporated with Iron, Nickel, and Zinc-based Nanoparticles // Water Res. 2019. V. 151. Pp. 349—361.
13. Kumar G. e. a. Recent Insights into the Cell Immobilization Technology Applied for Dark Fermentative Hydrogen Production // Bioresource Technol. 2016. V. 219. Pp. 725—737.
14. Srivastava N. e. a. Advances in Nanomaterials Induced Biohydrogen Production Using Waste Biomass // Bioresource Technol. 2020. V. 307. P. 123094.
15. Taherdanak M., Zilouei H., Karimi K. The Effects of Feo and Nio Nanoparticles Versus Fe2+ and Ni2+ Ions on Dark Hydrogen Fermentation // Intern. J Hydrogen Energy. 2016. V. 41. Pp. 167—173.
16. Taherdanak M., Zilouei H., Karimi K. Investigating the Effects of Iron and Nickel Nanoparticles on Dark Hydrogen Fermentation from starch Using Central Composite Design // Intern. J. Hydrogen Energy. 2015. V. 40. Pp. 12956—12963.
17. Yu L., Jiang W., Yu Y., Sun C. Effects of Dilution Ratio and Feo Dosing on Biohydrogen Production from Dewatered Sludge by Hydrothermal Pretreatment // Environ. Technol. 2014. V. 35. Pp. 3092—3104.
18. Yang G., Wang J. Improving Mechanisms of Biohydrogen Production from Grass Using Zero-valent Iron Nanoparticles // Bioresource Technol. 2018. V. 266. Pp. 413—420.
19. Mohanraj S., Kodhaiyolii S., Rengasamy M., Pugalenthi V. Phytosynthesized Iron Oxide Nanoparticles and Ferrous Iron on Fermentative Hydrogen Production Using Enterobacter Cloacae: Evaluation and Comparison of the Effects // Intern. J. Hydrogen Energy. 2014. V. 39. Pp. 11920—11929.
20. Feng Q., Song Y.C. Decoration of Graphite Fiber Fabric Cathode with Electron Transfer Assisting Material for Enhanced Bioelectrochemical Methane Production // J. Appl. Electrochem. 2016. V. 46. Pp. 1211—1219.
21. Feng Q., Song Y.C., Yoo K., Kuppanan N., Subudhi S., Lal B. Polarized Electrode Enhances Biological Direct Interspecies Electron Transfer for Methane Production in Upflow Anaerobic Bioelectrochemical Reactor // Chemosphere. 2018. V. 204. Pp. 186—192.
22. Park S.G. e. a. Methanogenesis Stimulation and Inhibition for the Production of Different Target Electrobiofuels in Microbial Electrolysis Cells Through an On-demand Control Strategy using the Coenzyme M and 2-bromoethanesulfonate // Environ. Int. 2019. V. 131. P. 105006.
23. Song Y.C., Feng Q., Ahn Y. Performance of the Bio-electrochemical Anaerobic Digestion of Sewage Sludge at Different Hydraulic Retention Times // Energy and Fuels. 2016. V. 30. Pp. 352—359.
24. Zhang Y., Merrill M.D., Logan B.E. The Use and Optimization of Stainless Steel Mesh Cathodes in Microbial Electrolysis Cells // Intern. J. Hydrogen Energy. 2010. V. 35. Pp. 12020—12028.
25. Sangeetha T. e. a. Energy Recovery Evaluation in an Up Flow Microbial Electrolysis Coupled Anaerobic Digestion (ME-AD) Reactor: Role of Electrode Positions and Hydraulic Retention Times // Appl. Energy. 2017. V. 206. Pp. 1214—1224.
26. Guo X., Liu J., Xiao B. Bioelectrochemical Enhancement of Hydrogen and Methane Production from the Anaerobic Digestion of Sewage Sludge in Single-chamber Membrane-free Microbial Electrolysis Cells // Intern. J. Hydrogen Energy. 2013. V. 38. Pp. 1342—1347.
27. Panchenko V., Izmailov A., Kharchenko V., Lobachevskiy Ya. Photovoltaic Solar Modules of Different Types and Designs for Energy Supply // Intern. J. Energy Optimization and Eng. 2020. V. 9(2). Pp. 74—94.
28. Panchenko V. Photovoltaic Solar Modules for Autonomous Heat and Power Supply // Proc. IOP Conf. Series: Earth and Environmental Sci. 2019. V. 317. P. 012002.
29. Kharchenko V., Panchenko V., Tikhonov P.V., Vasant P. Cogenerative PV Thermal Modules of Different Design for Autonomous Heat and Electricity Supply // Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development. Hershey: IGI Global, 2018. Pp. 86—119.
---
Для цитирования: Ковалев А.А., Ковалев Д.А., Панченко В.А. Разработка инновационных технических средств, использующих солнечную энергию, для интенсификации анаэробной биоконверсии // Вестник МЭИ. 2023. № 3. С. 95—101. DOI: 10.24160/1993-6982-2023-3-95-101
---
Исследование выполнено при поддержке Российского научного фонда (грант № 22-49-02002, https://rscf.ru/project/22-49-02002/)
#
1. Nozhevnikova A.N., Kallistova A.Yu., Litti Yu.V., Kevbrina M.V. Biotekhnologiya i Mikrobiologiya Anaerobnoy Pererabotki Organicheskikh Bytovykh Otkhodov. M.: Universitetskaya Kniga, 2016. (in Russian).
2. Kovalev D., Kovalev A., Litti Yu., Nozhevnikova A., Katraeva I. Vliyanie Nagruzki po Organicheskomu Veshchestvu na Protsess Biokonversii Predvaritel'no Obrabotannykh Substratov Anaerobnykh Bioreaktorov. Ekologiya i Promyshlennost' Rossii.2019;23(12):9—13. (in Russian).
3. Litti Yu., Kovalev D., Kovalev A., Katraeva I., Russkova J., Nozhevnikova A. Increasing the Efficiency of Organic Waste Conversion into Biogas by Mechanical Pretreatment in an Electromagnetic Mill. J. Phys. Conf. Ser. 2018;1111(1):1—8.
4. Kovalev A.A., Kovalev D.A., Grigor'ev V.S. Energeticheskaya Effektivnost' Predvaritel'noy Obrabotki Bioreaktora Sinteticheskogo Substrata Metantenka v Apparate Vikhrevogo Sloya. Inzhenernye Tekhnologii i Sistemy. 2020;30(1):92—110. (in Russian).
5. Baek G., Kim J., Kim J., Lee C. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion. Energies. 2018;11(1):107—125.
6. Nozhevnikova A.N. e. a. Syntrophy and Interspecies Electron Transfer in Methanogenic Microbial Communities. Microbiology. 2020;89;2:129—147.
7. Storck T., Virdis B., Batstone D.J. Modelling Extracellular Limitations for Mediated Versus Direct Interspecies Electron Transfer. J. ISME. 2016;10:621—631.
8. Khan M.A. e. a. Biohydrogen Production from Anaerobic Digestion and its Potential as Renewable Energy. Renewable Energy. 2018;129B:754—768.
9. Marone A. e. a. Coupling Dark Fermentation and Microbial Electrolysis to Enhance Bio-hydrogen Production from Agro-industrial Wastewaters and By-products in a Bio-refinery Framework. Intern. J. Hydrogen Energy. 2017;42(3):1609—1621.
10. Kim S., Kumar G., Chen W., Khana S. Renewable Hydrogen Production from Biomass and Wastes (ReBioH2-2020). Bioresource Technol. 2021;331:125024.
11. Sekoai P.T. e. a. Revising the Dark Fermentative H2 Research and Development Scenario — an Overview of the Recent Advances and Emerging Technological Approaches. Biomass Bioenergy. 2020;140:105673.
12. Elreedy A., Fujii M., Koyama M., Nakasaki K., Tawfik A. Enhanced Fermentative Hydrogen Production from Industrial Wastewater Using Mixed Culture Bacteria Incorporated with Iron, Nickel, and Zinc-based Nanoparticles. Water Res. 2019;151:349—361.
13. Kumar G. e. a. Recent Insights into the Cell Immobilization Technology Applied for Dark Fermentative Hydrogen Production. Bioresource Technol. 2016;219:725—737.
14. Srivastava N. e. a. Advances in Nanomaterials Induced Biohydrogen Production Using Waste Biomass. Bioresource Technol. 2020;307:123094.
15. Taherdanak M., Zilouei H., Karimi K. The Effects of Feo and Nio Nanoparticles Versus Fe2+ and Ni2+ Ions on Dark Hydrogen Fermentation. Intern. J Hydrogen Energy. 2016;41:167—173.
16. Taherdanak M., Zilouei H., Karimi K. Investigating the Effects of Iron and Nickel Nanoparticles on Dark Hydrogen Fermentation from starch Using Central Composite Design. Intern. J. Hydrogen Energy. 2015;40:12956—12963.
17. Yu L., Jiang W., Yu Y., Sun C. Effects of Dilution Ratio and Feo Dosing on Biohydrogen Production from Dewatered Sludge by Hydrothermal Pretreatment. Environ. Technol. 2014;35:3092—3104.
18. Yang G., Wang J. Improving Mechanisms of Biohydrogen Production from Grass Using Zero-valent Iron Nanoparticles. Bioresource Technol. 2018;266:413—420.
19. Mohanraj S., Kodhaiyolii S., Rengasamy M., Pugalenthi V. Phytosynthesized Iron Oxide Nanoparticles and Ferrous Iron on Fermentative Hydrogen Production Using Enterobacter Cloacae: Evaluation and Comparison of the Effects. Intern. J. Hydrogen Energy. 2014;39:11920—11929.
20. Feng Q., Song Y.C. Decoration of Graphite Fiber Fabric Cathode with Electron Transfer Assisting Material for Enhanced Bioelectrochemical Methane Production. J. Appl. Electrochem. 2016;46:1211—1219.
21. Feng Q., Song Y.C., Yoo K., Kuppanan N., Subudhi S., Lal B. Polarized Electrode Enhances Biological Direct Interspecies Electron Transfer for Methane Production in Upflow Anaerobic Bioelectrochemical Reactor. Chemosphere. 2018;204:186—192.
22. Park S.G. e. a. Methanogenesis Stimulation and Inhibition for the Production of Different Target Electrobiofuels in Microbial Electrolysis Cells Through an On-demand Control Strategy using the Coenzyme M and 2-bromoethanesulfonate. Environ. Int. 2019;131:105006.
23. Song Y.C., Feng Q., Ahn Y. Performance of the Bio-electrochemical Anaerobic Digestion of Sewage Sludge at Different Hydraulic Retention Times. Energy and Fuels. 2016;30:352—359.
24. Zhang Y., Merrill M.D., Logan B.E. The Use and Optimization of Stainless Steel Mesh Cathodes in Microbial Electrolysis Cells. Intern. J. Hydrogen Energy. 2010;35:12020—12028.
25. Sangeetha T. e. a. Energy Recovery Evaluation in an Up Flow Microbial Electrolysis Coupled Anaerobic Digestion (ME-AD) Reactor: Role of Electrode Positions and Hydraulic Retention Times. Appl. Energy. 2017;206:1214—1224.
26. Guo X., Liu J., Xiao B. Bioelectrochemical Enhancement of Hydrogen and Methane Production from the Anaerobic Digestion of Sewage Sludge in Single-chamber Membrane-free Microbial Electrolysis Cells. Intern. J. Hydrogen Energy. 2013;38:1342—1347.
27. Panchenko V., Izmailov A., Kharchenko V., Lobachevskiy Ya. Photovoltaic Solar Modules of Different Types and Designs for Energy Supply. Intern. J. Energy Optimization and Eng. 2020;9(2):74—94.
28. Panchenko V. Photovoltaic Solar Modules for Autonomous Heat and Power Supply. Proc. IOP Conf. Series: Earth and Environmental Sci. 2019;317:012002.
29. Kharchenko V., Panchenko V., Tikhonov P.V., Vasant P. Cogenerative PV Thermal Modules of Different Design for Autonomous Heat and Electricity Supply. Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development. Hershey: IGI Global, 2018:86—119.
---
For citation: Kovalev A.A., Kovalev D.A., Panchenko V.A. Development of Innovative Equipment that Use Solar Energy to Intensify Anaerobic Bioconversion. Bulletin of MPEI. 2023;3:95—101. (in Russian). DOI: 10.24160/1993-6982-2023-3-95-101
---
The study was carried out with the support of the Russian Science Foundation (Grant No. 22-49-02002, https://rscf.ru/project/22-49-02002/)
Published
2022-11-24
Section
Energy Systems and Complexes (2.4.5)